 
MA 341H-040
Applied Differential Equations I
Mathematics

Material on Test 3
MA 341H-040 home page  | Schedule | Homework | Hints and answers | Test study guides
Projects | Technology and DE's | Interactive DE tool | Calculus with Maple | Grade Book
Test 3 is Friday, November 16.
The test will be on  Secs. 9.1 - 9.7, 5.4, and 12.2.
Calculators may be used for arithmetic only.  You may also use the table of integrals in the front of the text.
Things you should be able to do:
Sec. 9.2.  Use row-reduction to row-echelon form to find all solutions of a system of linear equations.
Sec. 9.3.  Add matrices, multiply them by a constant, multiply matrices.  Find the inverse of a square matrix using row-reduction.  (For 2 by 2 matrices you may use the simple formula.)  Find the determinant of a square matrix.  Differentiate and integrate vector-valued and matrix-valued functions.  Check that a vector or matrix function of t satisfies a differential equation.  In addition, be sure you understand the theorem on p. 519.
Sec. 9.4.   Rewrite a system of scalar differential equations as a differential equation in matrix form and vice-versa.  Check that a collection of solutions of x'=Ax is a fundamental set of solutions, and use these solutions to give the general solution and a fundamental matrix.  Also, use these solutions and a particular solution of x'=Ax+f to give the general solution of x'=Ax+f.
Secs. 9.5 and 9.6.  Find eigenvalues and eigenvectors of a square matrix A.  Use them to give the general solution for x'=Ax.  Use the general solution or the fundamental matrix to solve initial value problems.
Sec. 9.7.  MODIFIED NOV. 12:  Use the variation of parameters formula to find the general solution of x'=Ax+f.