
THE SUBHARMONIC MELNIKOV INTEGRAL

S. SCHECTER

Consider
ẋ = f(x) + ǫg(t, x, ǫ), x ∈ R

2, ǫ small.

We assume:

(1) ẋ = f(x) has a one-parameter family of closed orbits with changing period.
(2) g(t, x, ǫ) has period T (ǫ).
(3) One of the closed orbits, Γ, with period T , is in resonance with g, i.e., there are

positive integers n and m such that

T (ǫ) =
n

m
T + kǫ+O(ǫ2).

We ask the question: are there orbits of period

mT (ǫ) = nT +mkǫ+O(ǫ2)

near Γ?
Let

x = φ(t, y, ǫ),

denote the solution with x(0) = y and parameter value ǫ. The Poincaré map of ẋ =
f(x) + ǫg(t, x, ǫ) on R

2 is
P (y, ǫ) = φ(T (ǫ), y, ǫ),

ie., we advance one period of the forcing function. Then

Pm(y, ǫ) = φ(mT (ǫ), y, ǫ) = φ(nT +mkǫ+O(ǫ2), y, ǫ).

The displacement d(y, ǫ) is defined by

d(y, ǫ) = Pm(y, ǫ)− y = φ(nT +mkǫ+O(ǫ2), y, ǫ).

We seek solutions of the equation d(y, ǫ) = 0. Notice that d(y, ǫ) ∈ R
2. Unlike the situations

we have previously considered, we do not have d(y, 0) ≡ 0, because the closed orbits of
ẋ = f(x) near Γ have periods different from T .

Let y0 be a point on Γ. We will need a convenient coordinate system near y0. Let Σ be a
line segment through y0 that is perpendicular to Γ. Let

v0 =

(

−f2(y0)
f1(y0)

)

/‖f(y0)‖.

The vector v0 is a unit vector that is perpendicular to f(y0), so it is perpendicular at y0 to
Γ. Let

s(z2) = y0 + z2v0.

Then z2 parameterizes Σ.
To simplify notation, let

ω(t, y) = φ(t, y, 0).
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With this notation, the coordinate system we need is

y = H(z) = ω(z1, y0 + z2v0), ‖z‖ small.

We define

φ̃(t, z, ǫ) = H−1φ(t, H(z), ǫ),

P̃ (z, ǫ) = H−1P (H(z), ǫ) = H−1φ(T (ǫ), H(z), ǫ) = φ̃(T (ǫ), z, ǫ).

φ̃ and P̃ are the flow and Poincaré map in z-coordinates. Notice that φ̃(t, z, ǫ) is only defined
when ‖z‖ is small and φ(t, H(z), ǫ) is near y0. We calculate:

P̃m(z, 0) = H−1φ
(

mT (0), H(z), 0
)

= H−1ω
(

mT (0), H(z)
)

= H−1ω
(

nT, ω(z1, s(z2))
)

= H−1ω
(

nT + z1, s(z2)
)

.

Denote the the period of the orbit of ẋ = f(x) through s(z2) by

τ(z2) = T + σ(z2) with σ(0) = 0.

We assume:
τ ′(z2) = σ′(z2) 6= 0.

In other words, the period of the closed orbits of ẋ = f(x) near Γ is changing in a nonde-
generate manner near Γ. Then

P̃m((z1, z2), 0) = H−1ω
(

nT + z1, s(z2)
)

= H−1ω
(

n(τ(z2)− σ(z2)) + z1, s(z2)
)

= H−1ω
(

−nσ(z2)+z1, ω(nτ(z2), s(z2))
)

= H−1ω
(

−nσ(z2)+z1, s(z2)
)

=
(

−nσ(z2)+z1, z2
)

.

Summarizing:
P̃m

(

(z1, z2), 0
)

=
(

− nσ(z2) + z1, z2
)

.

Instead of solving d(y, ǫ) = 0, we can instead define

d̃(z, ǫ) = H−1d(H(z), ǫ) = P̃m(z, ǫ)− z,

and try to solve d̃(z, ǫ) = 0.
We have

d̃((z1, z2), 0) = P̃m((z1, z2), 0)− (z1, z2) =
(

− nσ(z2) + z1, z2
)

− (z1, z2) =
(

− nσ(z2), 0
)

.

Notice that
d̃((z1, 0), 0) ≡ 0,

and that

D(z1,z2)d̃((z1, 0), 0) =

(

0 −nσ′(0)
0 0

)

.

From the assumption that σ′(0) 6= 0, we see that ∂d̃1
∂z2

((0, 0), 0) 6= 0.

Because the matrix D(z1,z2)d̃((z1, 0), 0) is not invertible, we cannot use the Implicit Func-

tion Theorem to solve the equation d̃(z, ǫ) = 0 for z as a function of ǫ. However, be-

cause ∂d̃1
∂z2

((0, 0), 0) 6= 0, we can use the Implicit Function Theorem to solve the equation

d̃1((z1, z2), ǫ) = 0 for z2 as a function of (z1, ǫ). We can then substitute the solution

z2 = z2(z1, ǫ) into the remaining equation d̃2((z1, z2), ǫ) = 0, which will leave us just one
equation in two variables to solve. This is an improvement: originally we had two equations
in three variables.
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Believe it or not, this simple idea has a name: Lyapunov-Schmidt reduction. See our text,
p. 224, where Lyapunov-Schmidt reduction is used instead of center manifold reduction
to study bifurcation of equilibria. The disadvantage of Lyapunov-Schmidt reduction for
studying bifurcation of equilibria is that it finds the equilibria but does not directly give
information about the flow near the equilibria. You can look up the general version of
Lyapunov-Schmidt reduction in Wikipedia.

Since d̃1((z1, 0), 0) ≡ 0, when we solve d̃1((z1, z2), ǫ) = 0 for z2 as a function of (z1, ǫ), we
will get

z2 = a(z1, ǫ) = ǫb(z1, ǫ).

Substituting into d̃2((z1, z2), ǫ) = 0, we obtain

d̃2((z1, ǫb(z1, ǫ)), ǫ) = ǫc(z1, ǫ) = 0. (1)

The reason d̃2((z1, ǫb(z1, ǫ)), ǫ) = ǫc(z1, ǫ) is that d̃2((z1, 0), 0) ≡ 0.

From (1) and the definition of d̃, we have

d̃2((z1, ǫb), ǫ) = P̃m
2 ((z1, ǫb), ǫ)− ǫb = φ̃2(mT (ǫ), (z1, ǫb), ǫ)− ǫb.

(φ̃2 is the second coordinate of φ̃.) Differentiate both sides of the equation

φ̃2(mT (ǫ), (z1, ǫb), ǫ)− ǫb = ǫc

with respect to ǫ and set ǫ = 0:

∂φ̃2

∂t
(mT (0), (z1, 0), 0)mk +

∂φ̃2

∂z2
(mT (0), (z1, 0), 0)b+

∂φ̃2

∂ǫ
(mT (0), (z1, 0), 0)− b = c,

where b and c are evaluated at (z1, 0). Since mT (0) = nT , ∂φ̃2

∂t
= 0 when ǫ = 0, and ∂φ̃2

∂z2
= 1

when ǫ = 0, this simplifies to

∂φ̃2

∂ǫ
(nT, (z1, 0), 0) = c(z1, 0). (2)

To compute c(z1, 0), let z2 = 0 and define z̃1(z1, ǫ) and z̃2(z1, ǫ) by

φ̃(nT, (z1, 0), ǫ) = (z̃1(z1, ǫ), z̃2(z1, ǫ)).

Then

φ(nT, ω(z1, y0), ǫ) = ω(z̃1(z1, ǫ), s(z̃2(z1, ǫ))). (3)

Since
φ̃(nT, (z1, 0), 0) = (z1, 0),

we have

z̃1(z1, 0) = z1 and z̃2(z1, 0) = 0. (4)

From (3) and (4),

∂φ

∂ǫ
(nT, ω(z1, y0), 0) =

∂ω

∂t
(z1, y0)

∂z̃1
∂ǫ

(z1, 0) +Dyω(z1, y0)
∂z̃2
∂ǫ

(z1, 0)v0. (5)

Consider the linear differential equation

Ẋ = Df(ω(t, y))X. (6)

It has the vector solution ∂ω
∂t
(t, y) and the matrix solution Dyω(t, y). Let Φ(t, s, y) denote

the propagator of (6). Then Φ(t, 0, y) = Dyω(t, y).



4 S. SCHECTER

The adjoint equation of Ẋ = Df(ω(t, y0))X is

ẇ = −wDf(ω(t, y0)).

It has a solution ψ(t) with ψ(nT ) = v⊤0 .
Define the subharmonic Melnikov integral

M(z1) =

∫ nT

0

ψ(σ)g(σ − z1, ω(σ, y0), 0) dσ.

Theorem 1. If M(z1) = 0 and M ′(z1) 6= 0, then a curve of (m,n)-subharmonic solutions

emerges from ω(z1, y0).

To prove this theorem, we multiply (5) by ψ(nT + z1) and obtain

ψ(nT + z1)
∂φ

∂ǫ
(nT, ω(z1, y0), 0)

= ψ(nT + z1)
∂ω

∂t
(z1, y0)

∂z̃1
∂ǫ

(z1, 0) + ψ(nT + z1)Dyω(z1, y0)
∂z̃2
∂ǫ

(z1, 0)v0. (7)

Now

∂ω

∂t
(z1, y0) =

∂ω

∂t
(nT + z1, y0),

so

ψ(nT +z1)
∂ω

∂t
(z1, y0) = ψ(nT +z1)

∂ω

∂t
(nT +z1, y0) = ψ(nT )

∂ω

∂t
(nT, y0) = v⊤0 f(y0) = 0. (8)

Also,

ψ(nT+z1)Dyω(z1, y0) = ψ(nT+z1)Φ(z1, 0, y0) = ψ(nT+z1)Φ(nT+z1, nT, y0) = ψ(nT ) = vT0 ,

so

ψ(nT + z1)Dyω(z1, y0)
∂z̃2
∂ǫ

(z1, 0)v0 = v⊤0
∂z̃2
∂ǫ

(z1, 0)v0 =
∂z̃2
∂ǫ

(z1, 0). (9)

From (8) and (9), (7) simplifies to

ψ(nT + z1)
∂φ

∂ǫ
(nT, ω(z1, y0), 0) =

∂z̃2
∂ǫ

(z1, 0) = c(z1, 0).

Now

∂φ

∂ǫ
(nT, ω(z1, y0), 0) =

∫ nT

0

Φ(nT, s, ω(z1, y0))g(s, ω(s+ z1, y0), 0) ds

=

∫ nT

0

Φ(nT + z1, s+ z1, y0)g(s, ω(s+ z1, y0), 0) ds.
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Therefore

c(z1, 0) = ψ(nT + z1)
∂φ

∂ǫ
(nT, ω(z1, y0), 0)

= ψ(nT + z1)

∫ nT

0

Φ(nT + z1, s+ z1, y0)g(s, ω(s+ z1, y0), 0) ds

=

∫ nT

0

ψ(s+ z1)g(s, ω(s+ z1, y0), 0) ds =

∫ nT+z1

z1

ψ(σ)g(σ − z1, φ(σ, y0), 0) dσ

=

∫ nT

0

ψ(σ)g(σ − z1, ω(σ, y0), 0) dσ.

The theorem follows from this calculation. However, the last equality requires comment.
It is clearly correct if the integrand has period nT in σ. g(σ − z1, ω(σ, y0), 0) has period

mT (0) = nT . Up to a scalar multiple,

ψ(σ) = exp

(

−

∫ σ

0

divf(ω(r, y0)) dr

)

(

−f2(ω(σ, y0)) f1(ω(σ, y0))
)

.

The row vector
(

−f2(ω(σ, y0)) f1(ω(σ, y0))
)

has period T in σ. From Liouville’s formula,
we know that

detDyω(T, y0) = exp

(
∫ T

0

divf(ω(r, y0)) dr

)

.

But Dyω(T, y0) is similar to

Dzφ̃(T, 0, 0) =

(

1 −σ′(0
0 1

)

.

Since the second matrix has determinant 1, so does the first. Therefore the function

exp

(
∫ σ

0

divf(ω(r, y0)) dr

)

,

which equals 1 at σ = 0, also equals 1 at σ = T . Hence its inverse, the function

exp

(

−

∫ σ

0

divf(ω(r, y0)) dr

)

,

also equals 1 at σ = 0 and at σ = T . Therefore it has period T in σ. It follows that ψ(σ)
has period T in σ.


