MA 732 Test 1

S. Schecter

February 27, 2009

1. Consider the 2π-periodic differential equation

$$
\dot{x}=\cos t+x \sin t-x^{3} .
$$

(a) Show that this differential equation has at least one 2π-periodic solution. (Suggestion: consider \dot{x} for x very positive and for x very negative.)
(b) Show that any 2π-periodic solution is attracting. (Calculate the derivative of the Poincaré map.)
(c) Use parts (a) and (b) to explain why this differential equation has a unique 2π periodic solution.
2. Define $A: C^{0}([a, b], \mathbb{R}) \rightarrow C^{0}([a, b], \mathbb{R})$ by

$$
A \phi(t)=\int_{a}^{t} \phi(s) d s
$$

A is a linear map. (You don't have to show this.)
(a) Show that A is bounded.
(b) Find $\|A\|$ and justify your answer.
3. Use center manifold reduction to draw the phase portrait near the origin for the system

$$
\begin{aligned}
& \dot{x}=y-x^{2} \\
& \dot{y}=-2 y+2 x^{2}-2 x y .
\end{aligned}
$$

Use the following facts: the linearization at the origin has eigenvalues 0 and -2 , with corresponding eigenvectors

$$
\binom{1}{0} \quad \text { and } \quad\binom{1}{-2} .
$$

Therefore the center manifold has the form $y=A x^{2}+B x^{3}+\ldots$. You will need both A and B.
4. Let B be an invertible $n \times n$ matrix, and let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be C^{1} with $G(0)=0$ and $D G(0)=0$. We want to prove that if $\|y\|$ is small then the equation $B x+G(x)=y$ has a unique small solution x (there could be other solutions with $\|x\|$ large), and that x is a C^{1} function of y. More precisely, we want to prove:

If $\epsilon>0$ is sufficiently small, then there exists $\delta>0$ and a map

$$
H:\left\{y \in \mathbb{R}^{n}:\|y\|<\delta\right\} \rightarrow\left\{x \in \mathbb{R}^{n}:\|x\| \leq \epsilon\right\}
$$

such that (1) $x=H(y)$ is the only solution with $\|x\| \leq \epsilon$ of the equation $B x+G(x)=y$ and (2) H is C^{1}.

Note that $B x+G(x)=y$ if and only if $x=B^{-1}(y-G(x))$. Define $T: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T(x, y)=B^{-1}(y-G(x))$. For a given $y \in \mathbb{R}^{n}, B x+G(x)=y$ if and only if $x=T(x, y)$, i.e., if and only if x is a fixed point of $T(\cdot, y)$.
(a) First we choose $\epsilon>0$ small enough so that if $\|x\| \leq \epsilon$ then $\|D G(x)\| \leq \frac{1}{2\left\|B^{-1}\right\|}$. Why can we do this?
(b) Next we let $\delta=\frac{\epsilon}{2\left\|B^{-1}\right\|}$. Show that if $\|y\|<\delta$, then T maps $\{x:\|x\| \leq \epsilon\}$ into itself.
(c) Show that for each y with $\|y\|<\delta, T$ is a contraction of $\{x:\|x\| \leq \epsilon\}$.
(d) Let $H(y)$ be the fixed point of $T(\cdot, y)$. Explain why H has the required properties.

