MA 732 Test 1

S. Schecter

February 27, 2009

1. Consider the 2π -periodic differential equation

$$\dot{x} = \cos t + x \sin t - x^3.$$

- (a) Show that this differential equation has at least one 2π -periodic solution. (Suggestion: consider \dot{x} for x very positive and for x very negative.)
- (b) Show that any 2π -periodic solution is attracting. (Calculate the derivative of the Poincaré map.)
- (c) Use parts (a) and (b) to explain why this differential equation has a unique 2π periodic solution.
- 2. Define $A: C^0([a,b],\mathbb{R}) \to C^0([a,b],\mathbb{R})$ by

$$A\phi(t) = \int_{a}^{t} \phi(s) \, ds.$$

A is a linear map. (You don't have to show this.)

- (a) Show that A is bounded.
- (b) Find ||A|| and justify your answer.
- 3. Use center manifold reduction to draw the phase portrait near the origin for the system

$$\dot{x} = y - x^2,$$

$$\dot{y} = -2y + 2x^2 - 2xy.$$

Use the following facts: the linearization at the origin has eigenvalues 0 and -2, with corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Therefore the center manifold has the form $y = Ax^2 + Bx^3 + \dots$ You will need both A and B.

1

4. Let B be an invertible $n \times n$ matrix, and let $G : \mathbb{R}^n \to \mathbb{R}^n$ be C^1 with G(0) = 0 and DG(0) = 0. We want to prove that if ||y|| is small then the equation Bx + G(x) = y has a unique small solution x (there could be other solutions with ||x|| large), and that x is a C^1 function of y. More precisely, we want to prove:

If $\epsilon > 0$ is sufficiently small, then there exists $\delta > 0$ and a map

$$H: \{y \in \mathbb{R}^n : ||y|| < \delta\} \to \{x \in \mathbb{R}^n : ||x|| \le \epsilon\}$$

such that (1) x = H(y) is the only solution with $||x|| \le \epsilon$ of the equation Bx + G(x) = y and (2) H is C^1 .

Note that Bx + G(x) = y if and only if $x = B^{-1}(y - G(x))$. Define $T : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by $T(x,y) = B^{-1}(y - G(x))$. For a given $y \in \mathbb{R}^n$, Bx + G(x) = y if and only if x = T(x,y), i.e., if and only if x is a fixed point of $T(\cdot,y)$.

- (a) First we choose $\epsilon > 0$ small enough so that if $||x|| \le \epsilon$ then $||DG(x)|| \le \frac{1}{2||B^{-1}||}$. Why can we do this?
- (b) Next we let $\delta = \frac{\epsilon}{2\|B^{-1}\|}$. Show that if $\|y\| < \delta$, then T maps $\{x : \|x\| \le \epsilon\}$ into itself.
- (c) Show that for each y with $||y|| < \delta$, T is a contraction of $\{x : ||x|| \le \epsilon\}$.
- (d) Let H(y) be the fixed point of $T(\cdot, y)$. Explain why H has the required properties.