PROOF OF THE STABLE MANIFOLD THEOREM

S. SCHECTER

Consider the system & = Az + g(z), where x € R", A is a hyperbolic n X n matrix, g is
C', g(0) =0, and Dg(0) = 0.

From the definition of hyperbolic, there are complementary subspaces E® and E“of R",
both invariant under A, such that A|E® has only eigenvalues with negative real part, and
A|E™ has only eigenvalues with positive real part. There are corresponding linear projections
Il : R" — E° 11, : R" — E* such that any z equals II;x 4+ II,z. (This definition implies
many things, such as [I;x = z if and only if x € F* [I,x = z if and only if z € E*, Il;x =0
if and only if x € E*, II,z = 0 if and only if x € E*.)

[T, and II, commute with A. This is just another way of saying that E* and E" are
invariant under A:

[, Ax = All,x, 11,Ax = All,x.
E* and E* are both invariant under ¢4, so II, and II, commute with A:
et = etAHS:B, et = 1,2
Recall that there exist constants K > 1 and « > 0 such that for all z € R,
| x| < Ke ™|,z for all t >0, |e " ,z| < Ke *|IL,z| for all t > 0.

Let
U={zeR":|z| <€}, Vs={zeR": || <}
Recall that if 0 is an equilibrium of & = f(z) and U is a neighborhood of 0, then the local
stable set of 0 with respect to U is

Wi (0)={z e U:¢(t,z)eUforallt >0 and ¢(t,z) — 0 as t — oo}.

Theorem 1 (Stable Manifold Theorem). Consider & = Ax+ g(x) as above. For sufficiently
small € > 0 there exists 6, 0 < & < €, such that the local stable set of 0 with respect to
U., intersected with Vs, is the graph of a C' function k from {x, € E® : |xs| < § to E™.
Moreover, k(0) = 0 and DE(0) = 0.

The theorem says essentially that W _(0) is a C'' manifold, with dimension equal to that
of E?, that is tangent to £° at 0.

More generally, if g is C" (respectively C*°, respectively analytic), then k is C" (respectively
C*, respectively analytic).

The proof is an application of the Contraction Mapping Theorem with Parameters. But
first we need a lemma.

We shall use Ry to mean the interval [0, co).

Lemma 2. Consider the inhomogeneous linear differential equation
& = Ax + h(t) (1)
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with A as above and h : Ry — R™ a bounded continuous function. Let x; € E°. Then there

is a unique function x : R, — R™ such that (i) x is a solution of (1), (ii) x is bounded, and
(iii) Mgz (0) = z5. Moreover,

t t
x(t) :etA:L’s-l-/ UL A (s) ds+/ eI, h(s) ds. (2)
0

o0

The first two terms on the right give the stable part of z(¢). The last term gives the
unstable part.

Proof. Let 7 € R. Any solution of (1) can be written
z(t) = e x(r) + /t e = n(s) ds. (3)
Take 7 = 0 in (3) and apply Il to both sides. We get
,x(t) = ' ,2(0) + /t e AL h(s) ds.

0

In order to satisfy (iii), we have
t
ILz(t) = e, —i—/ eI, h(s) ds. (4)
0
Now apply II,, to both sides of (3). We get

t
L,x(t) = e DAL, 2(7) +/ e AL, h(s) ds. (5)

T

Think of ¢ as fixed and let 7 — oco. If x is bounded, then in the first summand, t — 7 — —o0
and I1,z(7) stays bounded. Therefore the first summand approaches 0, so we obtain

t
IL,z(t) = / eI, h(s) ds. (6)
Adding (4) and (6) we obtain (2)

What we have shown so far is uniqueness: if = satisfies (i), (ii), and (iii), then z(¢) is given
by (3). To show existence, just check that (3) does in fact satisfy (i), (ii), and (iii). (i) and
(iii) are pretty clear, we’ll check (ii) shortly. O

To prove the Stable Manifold Theorem, define 7' : C*(R,,R") — C°(R,,R") by

t t
Th(t) :/ e DAL h(s) ds+/ e AT, h(s) ds.
0

o0

Th(t) is the last two terms in (2). Actually, it’s not yet clear that T'h is a bounded function,
but we will show that shortly.

Lemma 3. T is a bounded linear map with |T|| < 2£.
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Proof. T is clearly linear. To show that 7" is bounded, calculate (assuming II, = II, = 1 for
simplicity)

t [e8)
|Th(t)| < / Ke =9)|n| ds + / Ke *C=Y|p| ds
0 t
s ¢ —Qs 1 00 at 1 —at 2K
P e ] ):thl <e (6_-—)+eat-e )§—|h|.
a 10 —Q dt (67 « (67 «

Therefore |Th| < 2£|p|. This shows both that Th is a bounded function, and that 7" is a
bounded linear map with ||7]| < 2£. O

= K|h| (e_o‘t .

Now we prove the Stable Manifold Theorem. Suppose z : R, — R" is a bounded solution
of ¥ = Ax + ¢g(x), i.e., & = Ax + g(x(t)). Since z(t) is bounded, so is g(z(t)). Hence, if
[T,2(0) = x5, Lemma 2 tells us that

x(t) :etAzs—l-/O 6(t_8)AHsg(x(s))ds+/ AL, g(2(s)) ds. (7)

To express (7) more compactly, define N : CO(R,,R") — C%(R,,R") by Nz(t) = g(z(t)).
N is a Nemytskii operator. Since g is C*', we know that N is C'. Then define F' : E* x
CO(R-I-?RN) - CO(R-HRH) by

F(xg,2)(t) = eMay + T o N(x)(t).

Equation (7) can now be written
r = F(z4, ). (8)

In other words, for given x,, a solution of & = Az + g(x) that is bounded on R, and has
[I,z(0) = z, is a fixed point of the mapping F(z,,-) from C°(R,,R") to itself. This is the
situation of the Contraction Mapping Theorem with Parameters.

Now 7 is bounded linear and N is C*, so T o N is C'. The map z, — ez, from E*® to
C°(R,,R") is bounded linear. Therefore F is C*.

Choose € > small enough so that

sup || Dg(z) (9)

I<-=.
x| <e 4K

In this expression z is just a point in R™. We can do this because Dg(0) = 0, and Dg(x)
depends continuously on z because g is C*.

Letézﬁ. Since K > 1, we have 0 < § < e.

Let

B={xr,€ E*: |z, <8}, W={zeC'R,R"):|z|<e}.
We claim that for each z, € B, F(xs,-) (i) maps W into itself, and (ii) is a contraction of

W with contraction constant %
To show (i), let x5 € B and x € W. Then

leMz| < Ke™™|a,| < K|z
Also, if x € R™ and |z| < ¢, then

l9(x)] = [g(x) = O] = |g(x) — g(0)] < Sup [Dg(s2)| x| <

Therefore if z € W then |N(z)| <

a
—¢.
4K

«
EE.
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We conclude that if z, € B and x € W,

< |eM < < e P
|, 2)] < [6¥.] + TN ()] < Kol + T ING@)| < Ko + 20 o= ¢
This proves (i)
To show (ii), let x5 € B and z,y € W. Then

9(a(6) = g(y()| < sup [ Dy (w(t) + 5(y(6)  2(6)) ) | Jo(0) ~ y(0)| < el ol
Therefore |N(z) — N(y)| < ;5| —yl, so
|F(2,,2) = Fz,,y)| = [TN(@) = TN(y)| = [T(N(x) = N(y))

< |IT][IN(z) = N(y)| <

This proves (ii).

For each x, € B let ¢(zs) € C°(R,,R") denote the fixed point of F(z,,-) in W. The

Contraction Mapping Theorem with Parameters says that the mapping
Y:B— W cCC'(R,,RY
is C.

By construction Ils(zs)(0) = z5. We are interested in I1,¢(x,)(0). Define k : E® — E*

by

k(xs) = ) (xs)(0) =11, 0 evg o (),
where evy : C°(R,,R") — R" is the bounded linear map that takes the function h(t) to
h(0). evg means “evaluate at ¢t = 0.”

Now a fixed point of F'(0,-) is certainly x = 0 (it satisfies all the conditions). Since z = 0
is in W, we must have ¢(0) = 0. (The first 0 is a point in E*®, the second is a constant
function.) Therefore

k(0) =TI, o evg o ¥(0) =
Now

DE(0) = II,, o evg o D(0).
To compute D (0), note that ¢ (xs) = F(xs, ¥(zs)) so

Dip(x) = DiF (s, ¢(25)) + Do F (25, 9(25)) D (5).
Taking x, = 0 and applying both sides to a vector h € E®, we obtain
D1p(0)h = D1 F(0,0)h 4+ DyF(0,0)Dy(0)h = e**h + T o DN(0)h = e
because DN (0) = 0 (a consequence of Dg(0) = 0). Therefore
Dk(0)h =TI, 0 evg 0 Dip(0)h = T, o evo(eh) = T,h = 0

because h € E*. Therefore Dk(0) =
This completes the proof of the Stable Manifold Theorem.



