
PROOF OF THE STABLE MANIFOLD THEOREM

S. SCHECTER

Consider the system ẋ = Ax + g(x), where x ∈ R
n, A is a hyperbolic n × n matrix, g is

C1, g(0) = 0, and Dg(0) = 0.
From the definition of hyperbolic, there are complementary subspaces Es and Euof Rn,

both invariant under A, such that A|Es has only eigenvalues with negative real part, and
A|Eu has only eigenvalues with positive real part. There are corresponding linear projections
Πs : R

n → Es, Πu : Rn → Es, such that any x equals Πsx + Πux. (This definition implies
many things, such as Πsx = x if and only if x ∈ Es, Πux = x if and only if x ∈ Eu, Πsx = 0
if and only if x ∈ Eu, Πux = 0 if and only if x ∈ Es.)

Πs and Πu commute with A. This is just another way of saying that Es and Eu are
invariant under A:

ΠsAx = AΠsx, ΠuAx = AΠux.

Es and Eu are both invariant under etA, so Πs and Πu commute with A:

Πse
tAx = etAΠsx, Πue

tAx = etAΠux.

Recall that there exist constants K ≥ 1 and α > 0 such that for all x ∈ R
n,

|etAΠsx| ≤ Ke−αt|Πsx| for all t ≥ 0, |e−tAΠux| ≤ Ke−αt|Πux| for all t ≥ 0.

Let

Uǫ = {x ∈ R
n : |x| ≤ ǫ}, Vδ = {x ∈ R

n : |Πsx| < δ}.

Recall that if 0 is an equilibrium of ẋ = f(x) and U is a neighborhood of 0, then the local
stable set of 0 with respect to U is

W s

loc(0) = {x ∈ U : φ(t, x) ∈ U for all t ≥ 0 and φ(t, x) → 0 as t→ ∞}.

Theorem 1 (Stable Manifold Theorem). Consider ẋ = Ax+ g(x) as above. For sufficiently
small ǫ > 0 there exists δ, 0 < δ < ǫ, such that the local stable set of 0 with respect to
Uǫ, intersected with Vδ, is the graph of a C1 function k from {xs ∈ Es : |xs| < δ to Eu.
Moreover, k(0) = 0 and Dk(0) = 0.

The theorem says essentially that W s

loc(0) is a C
1 manifold, with dimension equal to that

of Es, that is tangent to Es at 0.
More generally, if g is Cr (respectively C∞, respectively analytic), then k is Cr (respectively

C∞, respectively analytic).
The proof is an application of the Contraction Mapping Theorem with Parameters. But

first we need a lemma.
We shall use R+ to mean the interval [0,∞).

Lemma 2. Consider the inhomogeneous linear differential equation

ẋ = Ax+ h(t) (1)
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with A as above and h : R+ → R
n a bounded continuous function. Let xs ∈ Es. Then there

is a unique function x : R+ → R
n such that (i) x is a solution of (1), (ii) x is bounded, and

(iii) Πsx(0) = xs. Moreover,

x(t) = etAxs +

∫

t

0

e(t−s)AΠsh(s) ds+

∫

t

∞

e(t−s)AΠuh(s) ds. (2)

The first two terms on the right give the stable part of x(t). The last term gives the
unstable part.

Proof. Let τ ∈ R. Any solution of (1) can be written

x(t) = e(t−τ)Ax(τ) +

∫

t

τ

e(t−s)Ah(s) ds. (3)

Take τ = 0 in (3) and apply Πs to both sides. We get

Πsx(t) = etAΠsx(0) +

∫

t

0

e(t−s)AΠsh(s) ds.

In order to satisfy (iii), we have

Πsx(t) = etAxs +

∫

t

0

e(t−s)AΠsh(s) ds. (4)

Now apply Πu to both sides of (3). We get

Πux(t) = e(t−τ)AΠux(τ) +

∫

t

τ

e(t−s)AΠuh(s) ds. (5)

Think of t as fixed and let τ → ∞. If x is bounded, then in the first summand, t− τ → −∞
and Πux(τ) stays bounded. Therefore the first summand approaches 0, so we obtain

Πux(t) =

∫

t

∞

e(t−s)AΠuh(s) ds. (6)

Adding (4) and (6) we obtain (2)
What we have shown so far is uniqueness: if x satisfies (i), (ii), and (iii), then x(t) is given

by (3). To show existence, just check that (3) does in fact satisfy (i), (ii), and (iii). (i) and
(iii) are pretty clear, we’ll check (ii) shortly. �

To prove the Stable Manifold Theorem, define T : C0(R+,R
n) → C0(R+,R

n) by

Th(t) =

∫

t

0

e(t−s)AΠsh(s) ds+

∫

t

∞

e(t−s)AΠuh(s) ds.

Th(t) is the last two terms in (2). Actually, it’s not yet clear that Th is a bounded function,
but we will show that shortly.

Lemma 3. T is a bounded linear map with ‖T‖ ≤ 2K
α
.
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Proof. T is clearly linear. To show that T is bounded, calculate (assuming Πs = Πu = 1 for
simplicity)

|Th(t)| ≤

∫

t

0

Ke−α(t−s)|h| ds+

∫ ∞

t

Ke−α(s−t)|h| ds

= K|h|

(

e−αt ·
eαs

α

]t

0
+ eαt ·

e−αs

−α

]∞

t

)

= K|h|

(

e−αt

(

eαt

α
−

1

α

)

+ eαt ·
e−αt

α

)

≤
2K

α
|h|.

Therefore |Th| ≤ 2K
α
|h|. This shows both that Th is a bounded function, and that T is a

bounded linear map with ‖T‖ ≤ 2K
α
. �

Now we prove the Stable Manifold Theorem. Suppose x : R+ → R
n is a bounded solution

of ẋ = Ax + g(x), i.e., ẋ = Ax + g(x(t)). Since x(t) is bounded, so is g(x(t)). Hence, if
Πsx(0) = xs, Lemma 2 tells us that

x(t) = etAxs +

∫

t

0

e(t−s)AΠsg(x(s)) ds+

∫

t

∞

e(t−s)AΠug(x(s)) ds. (7)

To express (7) more compactly, define N : C0(R+,R
n) → C0(R+,R

n) by Nx(t) = g(x(t)).
N is a Nemytskii operator. Since g is C1, we know that N is C1. Then define F : Es ×
C0(R+,R

n) → C0(R+,R
n) by

F (xs, x)(t) = eAtxs + T ◦N(x)(t).

Equation (7) can now be written
x = F (xs, x). (8)

In other words, for given xs, a solution of ẋ = Ax + g(x) that is bounded on R+ and has
Πsx(0) = xs is a fixed point of the mapping F (xs, ·) from C0(R+,R

n) to itself. This is the
situation of the Contraction Mapping Theorem with Parameters.

Now T is bounded linear and N is C1, so T ◦N is C1. The map xs → eAtxs from Es to
C0(R+,R

n) is bounded linear. Therefore F is C1.
Choose ǫ > small enough so that

sup
|x|≤ǫ

‖Dg(x)‖ ≤
α

4K
. (9)

In this expression x is just a point in R
n. We can do this because Dg(0) = 0, and Dg(x)

depends continuously on x because g is C1.
Let δ = ǫ

2K
. Since K ≥ 1, we have 0 < δ < ǫ.

Let
B = {xs ∈ Es : |xs| < δ}, W = {x ∈ C0(R+,R

n) : |x| ≤ ǫ}.

We claim that for each xs ∈ B, F (xs, ·) (i) maps W into itself, and (ii) is a contraction of
W with contraction constant 1

2
.

To show (i), let xs ∈ B and x ∈ W . Then

|eAtxs| ≤ Ke−αt|xs| ≤ K|xs|.

Also, if x ∈ R
n and |x| ≤ ǫ, then

|g(x)| = |g(x)− 0| = |g(x)− g(0)| ≤ sup
0≤s≤1

‖Dg(sx)‖ |x| ≤
α

4K
ǫ.

Therefore if x ∈ W then |N(x)| ≤ α

4K
ǫ.
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We conclude that if xs ∈ B and x ∈ W ,

|F (xs, x)| ≤ |eAtxs|+ |TN(x)| ≤ K|xs|+ ‖T‖ |N(x)| ≤ K
ǫ

2K
+

2K

α

α

4K
ǫ =

ǫ

2
+
ǫ

2
= ǫ.

This proves (i)
To show (ii), let xs ∈ B and x, y ∈ W . Then

|g(x(t))− g(y(t))| ≤ sup
0≤s≤1

∥

∥

∥
Dg

(

x(t) + s
(

y(t)− x(t)
)

)
∥

∥

∥
|x(t)− y(t)| ≤

α

4K
|x− y|.

Therefore |N(x)−N(y)| ≤ α

4K
|x− y|, so

|F (xs, x)− F (xs, y)| = |TN(x)− TN(y)| = |T (N(x)−N(y))|

≤ ‖T || |N(x)−N(y)| ≤
2K

α

α

4K
|x− y| ≤

1

2
|x− y|.

This proves (ii).
For each xs ∈ B let ψ(xs) ∈ C0(R+,R

n) denote the fixed point of F (xs, ·) in W . The
Contraction Mapping Theorem with Parameters says that the mapping

ψ : B → W ⊂ C0(R+,R
n)

is C1.
By construction Πsψ(xs)(0) = xs. We are interested in Πuψ(xs)(0). Define k : Es → Eu

by
k(xs) = Πuψ(xs)(0) = Πu ◦ ev0 ◦ ψ(xs),

where ev0 : C0(R+,R
n) → R

n is the bounded linear map that takes the function h(t) to
h(0). ev0 means “evaluate at t = 0.”

Now a fixed point of F (0, ·) is certainly x ≡ 0 (it satisfies all the conditions). Since x ≡ 0
is in W , we must have ψ(0) = 0. (The first 0 is a point in Es, the second is a constant
function.) Therefore

k(0) = Πu ◦ ev0 ◦ ψ(0) = 0.

Now
Dk(0) = Πu ◦ ev0 ◦Dψ(0).

To compute Dψ(0), note that ψ(xs) = F (xs, ψ(xs)) so

Dψ(xs) = D1F (xs, ψ(xs)) +D2F (xs, ψ(xs))Dψ(xs).

Taking xs = 0 and applying both sides to a vector h ∈ Es, we obtain

Dψ(0)h = D1F (0, 0)h+D2F (0, 0)Dψ(0)h = eAth + T ◦DN(0)h = eAth

because DN(0) = 0 (a consequence of Dg(0) = 0). Therefore

Dk(0)h = Πu ◦ ev0 ◦Dψ(0)h = Πu ◦ ev0(e
Ath) = Πuh = 0

because h ∈ Es. Therefore Dk(0) = 0.
This completes the proof of the Stable Manifold Theorem.


