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The gradient of G : M — R with respect to the Riemannian metric g is the
vector field, denoted by grad G, such that

dGp(V) = gp(V,grad G) (1.28)

for each point p € M and every tangent vector V € TpM. The associated gradient
system on the manifold is the differential equation p = grad G(p).
(a) Prove that the gradient vector field is uniquely defined.
(b) Prove that if the Riemannian metric g on R® is the usual inner product at
each point of R%, then the invariant definition (1.28) of gradient agrees with the
Euclidean gradient.

Consider the upper half-plane of R? with the Riemannian metric

Y=y (Vi W) =y~ 2(V, W) (1.29)

where the angle brackets denote the usual inner product. The upper half-plane
with the metric g is called the Poincaré or Lobachevsky plane; its geodesics are
vertical lines and arcs of circles whose centers are on the z-axis. The geometry
is non-Euclidean; for example, if p is a point not on such a circle, then there
are infinitely many such circles passing through p that are paralle] to (do not
intersect) the given circle (see Exercise 3.11).

(c) Determine the gradient of the function G(z,y) = z* + y* with respect to
the Riemannian metric (1.29) and draw the phase portrait of the corresponding
gradient system on the upper half-plane. Also, compare this phase portrait with
the phase portrait of the gradient system with respect to the usual metric on the
plane.

If § is a submanifold of R™, then S inherits a Riemannian metric from the
usual inner product on R"™.

(d) Suppose that F": R™ — R. What is the relationship between the gradient of
F' on R™ and the gradient of the function F restricted to S with respect to the
inherited Riemannian metric (see Exercise 1.116)?

Hamiltonian systems on manifolds are defined in essentially the same way as
gradient systems except that the Riemannian metric is replaced by a symplectic
form. Although these objects are best described and analyzed using the calculus
of differential forms (see [12], [89], and [213]), they are easy to define. Indeed,
a symplectic form on a manifold is a smooth assignment of a bilinear, skew-
symmetric, nondegenerate 2-form in each tangent space. A 2-form w on a vector
space X is nondegenerate provided that ¥ = 0 is the only element of X such that
w(z,y) = 0 for all z € X. Prove: If a manifold has a symplectic form, then the
dimension of the manifold is even.

Suppose that M is a manifold and w is a symplectic form on M. The Hamilto-
nian vector field associated with a smooth scalar function H defined on M is the
unique vector field X such that, for every point p € M and all tangent vectors
V at p, the following identity holds:

dHp(V) = wp(Xa, V). (1.30)

(e) Let M := R*", view R®™ as R" x R" so that each tangent vector V on M is
decomposed as V' = (¥, V2) with V4, V2 € R, and define

w(V,W) == (W1, Va) (_OI é) (gi)
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Show that w is a symplectic form on M and Hamilton’s equations are produced
by the invariant definition (1.30) of the Hamiltonian vector field. \
(f) Push forward the Euclidean gradient (1.27) of the function G : R® — R to

the image of a cylindrical coordinate map, define
G(r,8,2) = G{rcos8,rsinb, z),

and show that the push forward gives the result

s la_g?a_g)_ (1.31)
or’r2 98’ 0z

(In practice, the function G is usually again called G. These two functions are

local representations of the same function in two different coordinate systems.)
(g) Recall the formula for the gradient in cylindrical coordinates from vector

analysis; namely,

gradG = (

=My 10, O 1.32
gradG = z-er + —57ep+ - e (1.32)

Show that the gradient vector fields (1.31) and (1.32) coincide. ‘
(h) Express the usual inner product in cylindrical coordinates, and use the invari-
ant definition of the gradient to determine the gradient in cylindrical coordinates.
(1) Repeat part (h) for spherical coordinates.

Exercise 1.140. [Electrostatic Potential] Suppose that two point charges with
opposite signs, each with charge g, placed a units apart and located symmetri-
cally with respect to the origin on the z-axis in space, produce the electrostatic
potential .

Go(z,9,2) = kq[(a® +3* + (2= 3))7V* = (& +9* + (= + 5N
where k > 0 is a constant and g > 0. If we are interested only in the field far
from the charges, the “far field,” then a is relatively small and therefore the first
nonzero term of the Taylor series of the electrostatic potential with respect to a
at a = 0 gives a useful approximation of Go. This approximation, an example of
a “far field approximation,” is called the dipole potential in Physics (see [87, Vol.
11, 6-1]). Show that the dipole potential is given by

G(Ii Y, Z) = k‘qaz(mg “+ yz + 32)—3/2.

By definition, the electric field F produced by the dipole potential associated with
’r};e two charges is E := —grad G. Draw the phase portrait of the differential
equation 1 = E(u) whose orbits are the “dipole” lines of force. Discuss the
stability of all rest points. Hint: Choose a useful coordinate system that reduces
the problem to two dimensions.

Blow Up at a Rest Point

As an application of polar coordinates, let us determine the phase portrait
of the differential equation in the Cartesian plane given by

i =z — 2y, g =% — 2z, (1.33)
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Figure 1.20: Phase portrait for the differential equation (1.34) on the upper
half of the phase cylinder and its “blowdown” to the Cartesian plane.

(see [76]). This system has a unique rest point at the origin that is not
hyperbolic. In fact, the system matrix for the linearization at the origin
vanishes. Thus, linearization provides no information about the phase por-
trait of the system near the origin.

Because the polar coordinate representation of a plane vector field is
always singular at the origin, we might expect that the polar coordinate
representation of a planar vector field is not particularly useful to deter-
mine the phase portrait near the origin. But this is not the case. Often
polar coordinates are the best way to analyze the vector field near the ori-
gin. The reason is that the desingularized vector field in polar coordinates
is a smooth extension to the singular line represented as the equator of the
phase cylinder. All points on. the equator are collapsed to the single rest
point at the origin in the Cartesian plane. Or, as we say, the equator is the
blowup of the rest point. This extension is valuable because the phase por-
trait of the vector field near the original rest point corresponds to the phase
portrait on the phase cylinder near the equatorial circle. Polar coordinates
and desingularization provide a mathematical microscope for viewing the
local behavior near the “Cartesian™ rest point.

The desingularized polar coordinate representation of system (1.33) is

7 =1%(cos® § — 2cos® fsin @ — 2 cos Asin? 0 + sin’ 9),
6 = 3r(cosfsin® 6 — cos? @ sin ). (1.34)

For this particular example, both components of the vector field have r
“as a common factor. From our discussion of reparametrization, we know

that the system with this factor removed has the same phase portrait as
the original differential equation in the portion of the phase cylinder where
r > 0. Of course, when we “blow down” to the Cartesian plane, the push
forward of the reparametrized vector field has the same phase portrait as
the original vector field in the punctured plane; exactly the set where the
original phase portrait is to be constructed.

Let us note that after division by r, the differential equation (1.34) has
several isolated rest point on the equator of the phase cylinder. In fact,
because this differential equation restricted to the equator is given by

0 = 3cosfsinf(sin @ — cos ),

we see that it has six rest points with the following angular coordinates:

0 T s 57 3r
o T =, —.
gt 4 2

The corresponding rest points for the reparametrized system are all hy-
perbolic. For example, the system matrix at the rest point (r,8) = (0, %)

1s
1 -1 0
70 35)

It has the negative eigenvalue —1 /V/2 in the positive direction of the Carte-
slan variable r on the cylinder and the positive eigenvalue 3//2 in the posi-
tive direction of the angular variable, This rest point is a hyperbolic saddle.
If each rest point on the equator is linearized in turn, the phase portrait
on the cylinder and the corresponding blowdown of the phase portrait on
the Cartesian plane are found to be as depicted in Figure 1.20. Hartman’s
theorem can be used to construct a proof of this fact.

The analysis of differential equation (1.33) is very instructive, but per-
haps somewhat misleading. Often, unlike this example, the blowup proce-
dure produces a vector field on the phase cylinder where some or all of the
rest points are not hyperbolic. Of course, in these cases, we can treat the
polar coordinates near one of the nonhyperbolic rest points as Cartesian
coordinates; we can translate the rest point to the origin; and we can blow
up again. If, after a finite number of such blowups, all rest points of the
resulting vector field are hyperbolic, then the local phase portrait of the
original vector field at the original nonhyperbolic rest point can be deter-
mined. For masterful treatments of this subject and much more, see [19],
[75], [76], and [219].

The idea of blowup and desingularization are far-reaching ideas in math-
ematics. For example, these ideas seem to have originated in algebraic ge-
ometry, where they play a fundamental role in understanding the structure
of algebraic varieties [29].



Compactification at Infinity

The orbits of a differential equation on R™ may be unbounded. One way
to obtain some information about the behavior of such solutions is to (try
to) compactify the Cartesian space, so that the vector field is extended
to a new manifold that contains the “points at infinity.” This idea, due
to Henri Poincaré [185], has been most successful in the study of planar
systems given by polynomial vector fields, also called polynomial systems
(see [7, p. 219] and [99]). In this section we will give a brief description of
the compactification process for such planar systems. We will again use the
manifold concept and the idea of reparametrization.
Let us consider a plane vector field, which we will write in the form

&= f(=z,y), ¥ =g(z,y). (1.35)

To study its phase portrait “near” infinity, let us consider the unit sphere
§?; that is, the two-dimensional submanifold of R? defined by

S = {(z,0,2) : 2? + 42 + 22 = 1},

and the tangent plane Il at its north pole; that is, the point with coordi-
nates (0,0, 1). The push forward of system (1.35) to II by the natural map

T = f(.’L‘, y)! Y = g(=, y)a z2=0. (136)

The idea is to “project” differential equation (1.36) to the unit sphere by
central projection; then the behavior of the system near infinity is the same
as the behavior of the projected system near the equator of the sphere.

Central projection is defined as follows: A point p € II is mapped to
the sphere by assigning the unique point on the sphere that lies on the
line segment from the origin in R3 to the point p. To avoid a vector field
specified by three components, we will study the projected vector field
restricted to a coordinate system on the sphere where the vector field is
again planar. Also, to obtain the desired compactification, we will choose
local coordinates defined in open sets that contain portions of the equator
of the sphere.

The central projection map Q : IT — S? is given by

Qe 1,1) = (z(e® + 9% + 1), y(a® + 42 + 1)"12, (22 4 2 4 1)~ 1/2),

One possibility for an appropriate coordinate system on the Poincaré sphere
is a spherical coordinate system; that is, one of the coordinate charts that
is compatible with the map

(o, &,6) — (psin ¢ cos 6, psingsiné, pcos @) (1.37)

1.0 wv1aIlro1as il
(see display (1.24)). For example, if we restrict to the portion of the sphere
where z > 0, then one such coordinate map is given by

¥(z,y, z) := (arccos(z), arctan (%))

The transformed vector field on the sphere is the push forward of the vector
field X that defines the differential equation on IT by the map ¥ o . In
view of equation (1.37) and the restriction to the sphere, the inverse of this
composition is the transformation P given by

sin ¢

sing |
P(¢,6) = (m cos 6, msmﬁ?).

Thus, the push forward of the vector field X is given by
DP(¢,6)"' X (P(¢,0)).

Of course, we can also find the transformed vector field simply by differen-
tiating with respect to ¢ in the formulas

¢ = arccos((z? + y2 + 1)~ 1/2), 6 = arctan (%)

If the vector field is polynomial with maximal degree k, then after we
evaluate the polynomials f and g in system (1.36) at P(¢,6) and take
mto account multiplication by the Jacobian matrix, the denominator of
the resulting expressions will contain cosk—1 ¢ as a factor. Note that ¢ = g
corresponds to the equator of the sphere and cos(%) = 0. Thus, the vector
field in spherical coordinates is desingularized by a reparametrization of
time that corresponds to multiplication of the vector field defining the

system by cos*~1¢. This desingularized system ([53])

k
C;i ¢¢ (cosfg —sinff) (1.38)
18 smooth at the equator of the sphere, and it has the same phase portrait
as the original centrally projected system in the upper hemisphere. There-
fore, we can often determine the phase portrait of the original vector field
“at infinity” by determining the phase portrait of the desingularized vec-
tor field on the equator. Note that because the vector field corresponding
to svstem (1.38) is everywhere tangent to the equator, the equator is an
mvariant set for the desingularized system.

Spherical coordinates are global in the sense that all the spherical coor-
dinate systems have coordinate maps that are local inverses for the fixed
spherical wrapping function (1.37). Thus, the push forward of the original
vector field will produce system (1.38) in every spherical coordinate system.

There are other coordinate systems on the sphere that have also proved
useful for the compactification of plane vector fields. For example, the right

¢ = (cosht1 B)(cosOf +sinfg), 6=




hemisphere of §%; that is, the subset {(z,y,2) : ¥ > 0} is mapped diffeo-
morphically to the plane by the coordinate function defined by

T oz
Ui(z,y,2) = (51 5)
Also, the map ¥ o Q, giving the central projection in these coordinates, is
given by ‘

(z,y,1) — (—z, 5)

Thus, the local representation of the central projection in this chart is
obtained using the coordinate transformations

Moreover, a polynomial vector field of degree k in these coordinates can
again be desingularized at the equator by a reparametrization correspond-
ing to multiplication of the vector field by v*~1. In fact, the desingularized
vector field has the form

vl N e X y= _ttig(t 1

i=vr (7 Y cugd ), a= gl ).

The function ¥ restricted to y < 0 produces the representation of the
central projection in the left hemisphere. Similarly, the coordinate map

Yy 2
oo = (4 )
on the sphere can be used to cover the remaining points, near the equator
in the upper hemisphere, with Cartesian coordinates (z,y, z) where y =0
but = # 0.

The two pairs of charts just discussed produce two different local vector
fields. Both of these are usually required to analyze the phase portrait near
infinity. Also, it is very important to realize that if the degree k is even, then
multiplication by v~ in the charts corresponding respectively to z < 0
and y < 0 reverses the original direction of time.

As an example of compactification, let us consider the phase portrait of
the quadratic planar system given by

=24z +4y%,  §=10zy. (1.39)

This system has no rest points in the finite plane.
In the chart corresponding to v > 0 with the chart map ¥4, the desin-
gularized system is given by

w =202 -%?+4, v =-10w (1.40)

Figure 1.21: Phase portrait on the Poincaré sphere for the differential equa-
tion (1.39).

where the symbol “’ ” denotes differentiation with respect to the new inde-
pendent variable after reparametrization. The first order system (1.40) has
rest points with cogrdinates (u,v) = (i%, 0). These rest points lie on the
u-axis: the set in our chart that corresponds to the equator of the Poincaré
sphere. Both rest points are hyperbolic. In fact, (%, 0) is a hyperbolic sink
and (—%.,O) is a hyperbolic source.

In the chart with v < 0 and chart map ¥,, the reparametrized local
system is given by the differential equation (1.40). But, because k = 2, the
direction of “time” has been reversed. Thus, the sink at (Z,0) in this chart
corresponds to a source for the original vector field centrally projected to
the Poincaré sphere. The rest point (~%,0) corresponds to a sink on the
Poincaré sphere.

We have now considered all points on the Poincaré sphere except those
on the great circle given by the equation y = 0. For these points, we must
use the charts corresponding to the map ¥,. In fact, there is a hyperbolic

- saddle point at the origin of each of these coordinate charts, and these

rest points correspond to points on the equator of the Poincaré sphere. Of
course, the other two points already discussed are also rest points in these
charts.

The phase portrait of the compactification of system (1.39) is shown in
Figure 1.21. Because the z-axis is an invariant manifold for the original
vector field, the two saddles at infinity are connected by a heteroclinic

~ orbit.

~ Exercise 1.141. Prove that §* is a two-dimensional submanifold of R2.

Exercise 1.142. Use spherical coordinates to determine the compactification

~ of the differential equation (1.39) on the Poincaré sphere.



