PERSISTENCE OF PERIODIC SOLUTIONS IN A ONE-PARAMETER FAMILY

S. SCHECTER

Consider

$$
\dot{x}=f(x)+\mu g(x), \quad x \in \mathbb{R}^{2}, \quad \mu \text { small. }
$$

(More generally one could consider $\dot{x}=f(x)+\mu g(x, \mu)$ with only small changes. This simpler situation is often considered in order to simplify the notation.) Denote the flow by

$$
x=\phi(t, y, \mu),
$$

i.e., $x(t)=\phi(t, y, \mu)$ is the solution with $x(0)=y$ and parameter value μ.

Assume: $\dot{x}=f(x)$ has a one-parameter family of closed orbits. We want to know if any "persist" when $\mu \neq 0$.
Let y_{0} be a point on one of the closed orbits, and let Σ be a line segment through y_{0} that is perpendicular to the closed orbit of $\dot{x}=f(x)$ through y_{0}. Let

$$
v_{0}=\binom{-f_{2}\left(y_{0}\right)}{f_{1}\left(y_{0}\right)} /\left\|f\left(y_{0}\right)\right\| .
$$

The vector v_{0} is a unit vector that is perpendicular to $f\left(y_{0}\right)$, so it is perpendicular at y_{0} to the closed orbit of $\dot{x}=f(x)$ through y_{0}. Then

$$
\Sigma=\left\{y(\xi)=y_{0}+\xi v_{0}, \xi \text { small }\right\}
$$

i.e., ξ parameterizes Σ. Notice that

$$
v_{0} \cdot\left(y(\xi)-y_{0}\right)=v_{0} \cdot \xi v_{0}=\xi
$$

because $v_{0} \cdot v_{0}=1$.
The Poincaré map of $\dot{x}=f(x)+\mu g(x)$ on Σ, using the parameter ξ, is just

$$
P(\xi, \mu)=v_{0} \cdot\left(\phi(T(\xi, \mu), y(\xi), \mu)-y_{0}\right),
$$

where $T(\xi, \mu)$ is the time it takes for the solution of $\dot{x}=f(x)+\mu g(x)$ that starts at $y(\xi) \in \Sigma$ to return to Σ. Since $P(\xi, \mu)=\xi$ (because the orbits of $\dot{x}=f(x)$ that pass near y_{0} are closed), we can write

$$
P(\xi, \mu)=\xi+\mu \Delta(\xi, \mu), \quad \Delta(\xi, 0)=\frac{\partial P}{\partial \mu}(\xi, 0)
$$

Lemma 1. If $\Delta\left(\xi_{1}, 0\right)=0$ and $\frac{\partial \Delta}{\partial \xi}\left(\xi_{1}, 0\right)=0$, then there is a curve $\xi(\mu)$, μ small, with $\xi(0)=\xi_{1}$, such that $P(\xi(\mu), \mu)=0$.
Proof. By the Implicit Function Theorem, there is a curve $\xi(\mu), \mu$ small, with $\xi(0)=\xi_{1}$, such that $\Delta(\xi(\mu), \mu)=0$. The result follows.

Thus the closed orbit of $\dot{x}=f(x)$ through $y\left(\xi_{1}\right)$ "persists," in the sense that for small μ, $\dot{x}=f(x)+\mu g(x)$ has a closed orbit through $y(\xi(\mu))$.

Date: April 7, 2013.

Lemma 2. Let $a(\xi), b(\xi)$, and $c(\xi)$ be C^{1} functions with $c(\xi) \neq 0$ for all ξ and $a(\xi)=$ $c(\xi) b(\xi)$. Then

$$
a\left(\xi_{1}\right)=0 \text { and } a^{\prime}\left(\xi_{1}\right) \neq 0 \text { if and only if } b\left(\xi_{1}\right)=0 \text { and } b^{\prime}\left(\xi_{1}\right) \neq 0
$$

The proof is left to you.
Let $x(t, \xi, \mu)$ denote the solution of $\dot{x}=f(x)+\mu g(x)$ whose value at $t=0$ is $y(\xi)$, i.e.,

$$
x(t, \xi)=\phi(t, y(\xi), \mu)
$$

(ξ and μ are parameters.) The linearization of $\dot{x}=f(x)$ along $x(t, \xi, 0)$ is, as usual,

$$
\dot{X}=D f(x(t, \xi, 0)) X
$$

Denote the propagator of $\dot{X}=D f(x(t, \xi, 0)) X$ by $\Phi(t, s, \xi)$. (Again ξ is a parameter.) In other words, if $X(t)$ is a solution of $\dot{X}=D f(x(t, \xi, 0)) X$, then for any t and s,

$$
X(t)=\Phi(t, s, \xi) X(s)
$$

Then the adjoint equation

$$
\dot{w}=-w D f(x(t, \xi, 0))
$$

has the same propagator:

$$
w(s)=w(t) \Phi(t, s, \xi)
$$

For each ξ let $v(\xi)$ denote a vector perpendicular to $f(y(\xi))$, with $v(0)$ a positive multiple of v_{0} and the length of $v(\xi)$ chosen so that $v(\xi)$ is a smooth function of ξ. Let $\psi(t, \xi)$ denote the solution of $\dot{w}=-w D f(x(t, \xi))$ whose value at $t=T(\xi, 0)$ is $v(\xi)^{\top}$, the transpose of $v(\xi)$:

$$
\psi(T(\xi, 0), \xi)=v(\xi)^{\top}
$$

Theorem 3. Let

$$
M(\xi)=\int_{0}^{T(\xi, 0)} \psi(t, \xi) g(x(t, \xi, 0)) d t
$$

(The integrand is a row vector times a column vector). If $M\left(\xi_{1}\right)=0$ and $M^{\prime}\left(\xi_{1}\right) \neq 0$, then there is a curve $\xi(\mu)$, μ small, with $\xi(0)=\xi_{1}$, such that $P(\xi(\mu), \mu)=\xi(\mu)$.

To prove the theorem we need to show that $\Delta(\xi, 0)=c(\xi) M(\xi)$ with $c(\xi) \neq 0$. The result then follows from the two lemmas.

Let $\phi(T(\xi, \mu), y(\xi), \mu)=y_{0}+\tilde{\xi}(\mu) v_{0}$, and let $\tilde{P}(\xi, \mu)=v(\xi) \cdot\left(\phi(T(\xi, \mu), y(\xi), \mu)-y_{0}\right)$. Then

$$
\begin{aligned}
& P(\xi, \mu)=v_{0} \cdot\left(\phi(T(\xi, \mu), y(\xi), \mu)-y_{0}\right)=\tilde{\xi}(\mu)=\frac{v(\xi) \cdot \tilde{\xi}(\mu) v_{0}}{v(\xi) \cdot v_{0}} \\
&=\frac{1}{v(\xi) \cdot v_{0}} v(\xi) \cdot\left(\phi(T(\xi, \mu), y(\xi), \mu)-y_{0}\right)=\frac{1}{v(\xi) \cdot v_{0}} \tilde{P}(\xi, \mu)
\end{aligned}
$$

Therefore

$$
\Delta(\xi, 0)=\frac{\partial P}{\partial \mu}(\xi, 0)=\frac{1}{v(\xi) \cdot v_{0}} \frac{\partial \tilde{P}}{\partial \mu}(\xi, 0)
$$

Since $v(0)$ is a positive multiple of v_{0}, we see that for ξ not too $\mathrm{big}, \Delta(\xi, 0)$ is a positive multiple of $\frac{\partial \tilde{P}}{\partial \mu}(\xi, 0)$. To complete the proof, we will show that

$$
\frac{\partial \tilde{P}}{\partial \mu}(\xi, 0)=M(\xi)
$$

From the definition of \tilde{P}, we calculate:

$$
\begin{aligned}
\frac{\partial \tilde{P}}{\partial \mu}(\xi, 0)=v(\xi) \cdot\left(\frac{\partial \phi}{\partial t}(T(\xi, 0), y(\xi), 0) \frac{\partial T}{\partial \mu}(\xi, 0)+\frac{\partial \phi}{\partial \mu}(T(\xi, 0)\right. & , y(\xi), 0)) \\
& =v(\xi) \cdot \frac{\partial \phi}{\partial \mu}(T(\xi, 0), y(\xi), 0)
\end{aligned}
$$

because $v(\xi)$ is perpendicular to

$$
f(y(\xi))=\frac{\partial \phi}{\partial t}(0, y(\xi), 0)=\frac{\partial \phi}{\partial t}(T(\xi, 0), y(\xi), 0) .
$$

Now

$$
\frac{\partial \phi}{\partial \mu}(t, y(\xi), 0)=\frac{\partial x}{\partial \mu}(t, \xi, 0)
$$

is the solution of the linear differential equation

$$
\begin{equation*}
\dot{X}=D f(x(t, \xi, 0)) X+g(x(t, \xi, 0)), \quad X(0, \xi)=0 \tag{1}
\end{equation*}
$$

(ξ is a parameter.) To see this, recall that $x(t, \xi, \mu)$ is the solution of

$$
\dot{x}=f(x)+\mu g(x), \quad x(0, \xi, \mu)=y(\xi) .
$$

Let $x=x(t, \xi, \mu)$ in the differential equation, then differentiate both the differential equation and the initial condition with respect to μ and set $\mu=0$.

The solution of (??) is

$$
\frac{\partial x}{\partial \mu}(t, \xi, 0)=X(t, \xi)=\int_{0}^{t} \Phi(t, s, \xi) g(x(s, \xi, 0)) d s
$$

Therefore

$$
\begin{aligned}
& \frac{\partial \tilde{P}}{\partial \mu}(\xi, 0)=v(\xi) \cdot \frac{\partial \phi}{\partial \mu}(T(\xi, 0), y(\xi), 0)=\psi(T(\xi), \xi) \frac{\partial x}{\partial \mu}(T(\xi), \xi, 0) \\
& \quad=\psi(T(\xi), \xi) \int_{0}^{T(\xi)} \Phi(T(\xi), s, \xi) g(x(s, \xi, 0)) d s=\int_{0}^{T(\xi)} \psi(s, \xi) g(x(s, \xi, 0)) d s=M(\xi)
\end{aligned}
$$

This complete the proof.

