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FAMILY
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Consider
ẋ = f(x) + µg(x), x ∈ R

2, µ small.

(More generally one could consider ẋ = f(x)+µg(x, µ) with only small changes. This simpler
situation is often considered in order to simplify the notation.) Denote the flow by

x = φ(t, y, µ),

i.e., x(t) = φ(t, y, µ) is the solution with x(0) = y and parameter value µ.
Assume: ẋ = f(x) has a one-parameter family of closed orbits. We want to know if any

“persist” when µ 6= 0.
Let y0 be a point on one of the closed orbits, and let Σ be a line segment through y0 that

is perpendicular to the closed orbit of ẋ = f(x) through y0. Let

v0 =

(

−f2(y0)
f1(y0)

)

/‖f(y0)‖.

The vector v0 is a unit vector that is perpendicular to f(y0), so it is perpendicular at y0 to
the closed orbit of ẋ = f(x) through y0. Then

Σ = {y(ξ) = y0 + ξv0, ξ small},

i.e., ξ parameterizes Σ. Notice that

v0 · (y(ξ)− y0) = v0 · ξv0 = ξ

because v0 · v0 = 1.
The Poincaré map of ẋ = f(x) + µg(x) on Σ, using the parameter ξ, is just

P (ξ, µ) = v0 ·
(

φ(T (ξ, µ), y(ξ), µ)− y0
)

,

where T (ξ, µ) is the time it takes for the solution of ẋ = f(x)+µg(x) that starts at y(ξ) ∈ Σ
to return to Σ. Since P (ξ, µ) = ξ (because the orbits of ẋ = f(x) that pass near y0 are
closed), we can write

P (ξ, µ) = ξ + µ∆(ξ, µ), ∆(ξ, 0) =
∂P

∂µ
(ξ, 0).

Lemma 1. If ∆(ξ1, 0) = 0 and ∂∆
∂ξ
(ξ1, 0) = 0, then there is a curve ξ(µ), µ small, with

ξ(0) = ξ1, such that P (ξ(µ), µ) = 0.

Proof. By the Implicit Function Theorem, there is a curve ξ(µ), µ small, with ξ(0) = ξ1,
such that ∆(ξ(µ), µ) = 0. The result follows. �

Thus the closed orbit of ẋ = f(x) through y(ξ1) “persists,” in the sense that for small µ,
ẋ = f(x) + µg(x) has a closed orbit through y(ξ(µ)).
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Lemma 2. Let a(ξ), b(ξ), and c(ξ) be C1 functions with c(ξ) 6= 0 for all ξ and a(ξ) =
c(ξ)b(ξ). Then

a(ξ1) = 0 and a′(ξ1) 6= 0 if and only if b(ξ1) = 0 and b′(ξ1) 6= 0.

The proof is left to you.
Let x(t, ξ, µ) denote the solution of ẋ = f(x) + µg(x) whose value at t = 0 is y(ξ), i.e.,

x(t, ξ) = φ(t, y(ξ), µ).

(ξ and µ are parameters.) The linearization of ẋ = f(x) along x(t, ξ, 0) is, as usual,

Ẋ = Df(x(t, ξ, 0))X.

Denote the propagator of Ẋ = Df(x(t, ξ, 0))X by Φ(t, s, ξ). (Again ξ is a parameter.) In
other words, if X(t) is a solution of Ẋ = Df(x(t, ξ, 0))X , then for any t and s,

X(t) = Φ(t, s, ξ)X(s).

Then the adjoint equation
ẇ = −wDf(x(t, ξ, 0))

has the same propagator:
w(s) = w(t)Φ(t, s, ξ).

For each ξ let v(ξ) denote a vector perpendicular to f(y(ξ)), with v(0) a positive multiple
of v0 and the length of v(ξ) chosen so that v(ξ) is a smooth function of ξ. Let ψ(t, ξ) denote
the solution of ẇ = −wDf(x(t, ξ)) whose value at t = T (ξ, 0) is v(ξ)⊤, the transpose of v(ξ):

ψ(T (ξ, 0), ξ) = v(ξ)⊤.

Theorem 3. Let

M(ξ) =

∫ T (ξ,0)

0

ψ(t, ξ) g(x(t, ξ, 0)) dt.

(The integrand is a row vector times a column vector). If M(ξ1) = 0 and M ′(ξ1) 6= 0, then
there is a curve ξ(µ), µ small, with ξ(0) = ξ1, such that P (ξ(µ), µ) = ξ(µ).

To prove the theorem we need to show that ∆(ξ, 0) = c(ξ)M(ξ) with c(ξ) 6= 0. The result
then follows from the two lemmas.

Let φ(T (ξ, µ), y(ξ), µ) = y0 + ξ̃(µ)v0, and let P̃ (ξ, µ) = v(ξ) ·
(

φ(T (ξ, µ), y(ξ), µ)− y0
)

.
Then

P (ξ, µ) = v0 ·
(

φ(T (ξ, µ), y(ξ), µ)− y0
)

= ξ̃(µ) =
v(ξ) · ξ̃(µ)v0
v(ξ) · v0

=
1

v(ξ) · v0
v(ξ) ·

(

φ(T (ξ, µ), y(ξ), µ)− y0
)

=
1

v(ξ) · v0
P̃ (ξ, µ)

Therefore

∆(ξ, 0) =
∂P

∂µ
(ξ, 0) =

1

v(ξ) · v0

∂P̃

∂µ
(ξ, 0).

Since v(0) is a positive multiple of v0, we see that for ξ not too big, ∆(ξ, 0) is a positive

multiple of ∂P̃
∂µ

(ξ, 0). To complete the proof, we will show that

∂P̃

∂µ
(ξ, 0) =M(ξ).
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From the definition of P̃ , we calculate:

∂P̃

∂µ
(ξ, 0) = v(ξ) ·

(

∂φ

∂t
(T (ξ, 0), y(ξ), 0)

∂T

∂µ
(ξ, 0) +

∂φ

∂µ
(T (ξ, 0), y(ξ), 0)

)

= v(ξ) ·
∂φ

∂µ
(T (ξ, 0), y(ξ), 0)

because v(ξ) is perpendicular to

f(y(ξ)) =
∂φ

∂t
(0, y(ξ), 0) =

∂φ

∂t
(T (ξ, 0), y(ξ), 0).

Now
∂φ

∂µ
(t, y(ξ), 0) =

∂x

∂µ
(t, ξ, 0)

is the solution of the linear differential equation

Ẋ = Df(x(t, ξ, 0))X + g(x(t, ξ, 0)), X(0, ξ) = 0. (1)

(ξ is a parameter.) To see this, recall that x(t, ξ, µ) is the solution of

ẋ = f(x) + µg(x), x(0, ξ, µ) = y(ξ).

Let x = x(t, ξ, µ) in the differential equation, then differentiate both the differential equation
and the initial condition with respect to µ and set µ = 0.

The solution of (??) is

∂x

∂µ
(t, ξ, 0) = X(t, ξ) =

∫ t

0

Φ(t, s, ξ)g(x(s, ξ, 0)) ds.

Therefore

∂P̃

∂µ
(ξ, 0) = v(ξ) ·

∂φ

∂µ
(T (ξ, 0), y(ξ), 0) = ψ(T (ξ), ξ)

∂x

∂µ
(T (ξ), ξ, 0)

= ψ(T (ξ), ξ)

∫ T (ξ)

0

Φ(T (ξ), s, ξ)g(x(s, ξ, 0)) ds =

∫ T (ξ)

0

ψ(s, ξ)g(x(s, ξ, 0)) ds =M(ξ).

This complete the proof.


