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Hence, every periodic solution in the interval [0,a + b + 1] is stable. The
uniqueness of the periodic solution is a consequence of this result. In fact,
the map P is real analytic. Thus, if P has infinitely many fixed points
in a compact interval, then P is the identity. This is not true, so P has
only a finite number of fixed points. If & and &; are the coordinates of
two consecutive fixed points, then the displacement function, that is, £ s
P(€) — €, has negative slope at two consecutive zeros, in contradiction.

Exercise 1.155. Find an explicit formula for the solution of the differential
equation (1.43) and use it to give a direct proof for the existence of a nontrivial
periodic solution.

Exercise 1.156. Prove that P"(£) < 0 for £ > 0, where P is the Poincaré
map defined for the differential equation (1.43). Use this result and the inequal-
ity (1.45) to prove the uniqueness of the nontrivial periodic solution of the dif-
ferential equation.

Exer_cise 1.157. Show that the (stroboscopic) Poincaré map for the differential
equation (1.43) has exactly one fixed point on the interval (0, 00). How many fixed
points are there on (—oco, co)?

Exercise 1.158. Suppose that h : R — R is a T-periodic function, and 0 <
h(t) < 1/4 for every t € R. Show that the differential equation & = z(1—z) — h(t)
has exactly two T-periodic solutions. The differential equation can be interpreted
as a model for the growth of a population in a limiting environment that is
subjected to periodic harvesting (cf. [200]).

Exercise 1.159. Is it possible for the Poincaré map for a scalar differential
egua,tlon not to be the identity map on a fixed compact interval and at the same
time have infinitely many fixed points in the interval?

Exercise 1.160. [Boundary Value Problem] (a) Prove that the Dirichlet bound-
ary value problem

'=1-2° 2(0)=0, 2(2)=0

has a solution. Hint: Use the phase plane. Show that the first positive time T
such that the orbit with initial conditions z(0) = 0 and z(0) = 0 reaches the
z-axis is T < 2 and for the initial conditions %(0) = 0 and 2'(0) = 2/v/3, T > 2.
To show this fact use the idea in the hint for Exercise 1.12 to construct an
integral representation for 7. (b} Find a solution of the boundary value problem
b).r sho?ting and Newton’s method (see Exercise 1.124). Hint: Use the phase plane
with ¢’ = y. Consider the solution ¢ (z(t,m),y(t,m)) with initial conditions
z(0) = 0 and y(0) =  and use Newton’s method to solve the equation y(2,7) = 0.
Note: The solutions with different choices for the velocity are viewed as shots.
The velocity is adjusted until the target is hit.

Exercise 1.161. Consider the linear system
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where @ > 0 and b > 0 in the open first quadrant of the phase plane and let ¢
denote its flow. (a) Show that L := {(£,1): £ > 0} and M := {(1,n) : n > 0} are
transverse sections for the system. (b) Find a formula for the section map h from
L to M. (¢) Find a formula for 7" : L — R, called the time-of-flight map, which

is defined by dr(¢)(£,1) = (1, h(E)).
Exercise 1.162. Compute the time required for the solution of the system

& =zx(l —y), y=ylz—1)

with initial condition (z,y) = (1,0) to arrive at the point (z,y) = (2,0). Note
that this system has a section map y — h(y) defined from a neighborhood of
{z,4) = (1,0) on the line given by z = 1 to the line given by = = 2. Compute
r'(0).
Exercise 1.163. Observe that the z-axis is invariant for the system
. . 2, 3
t=14zy, g=2zy +y,
and the trajectory starting at the point (1,0) crosses the line z = 3 at (3,0).
Thus, there is a section map h and a time-of-flight map T from the line z = 1 to
the line z = 3 with both functions defined on some open interval about the point
(1,0) on the line z = 1. Compute 7”(0) and A'(0).

Exercise 1.164. Research Problem: Consider the second order differential equa-
tion

E4 f(zx)d+g(z) =0

where f and g are 2n-periodic functions. Determine conditions on f and g that
ensure the existence of a periodic solution.

1.9.2 Limit Sets and Poincaré-Bendizson Theory

The general problem of finding periodic solutions for differential equations
15 still an active area of mathematical research. Perhaps the most well
developed theory for periodic solutions is for differential equations defined
on the plane. But, even in this case, the theory is far from complete. For
example, consider the class of planar differential equations of the form

a:-—-f(a:,y), y:g(ﬂ:!y)

where f and g are quadratic polynomials. There are examples of such
“quadratic systems” that have four isolated periodic orbits— “isolated”
means that each periodic orbit is contained in an open subset of the plane
that contains no other periodic orbits (see Exercise 1.194). But, no one
knows at present if there is a quadratic system with more than four isolated
periodic orbits. The general question of the number of isolated periodic or-
bits for a polynomial system in the plane has been open since 1905; it is

called Hilbert’s 16th problem (see [55], [126], [187], and [197]).
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Although there are certainly many difficult issues associated with pe-
riodic orbits of planar systems, an extensive theory has been developed
that has been successfully applied to help determine the dynamics of many
mathematical models. Some of the basic results of this theory will be ex-
plained later in this section after we discuss some important general prop-
erties of flows of autonomous, not necessarily planar, systems.

The properties that we will discuss enable us to begin to answer the
question “What is the long term behavior of a dynamical system?” This
is often the most important question about a mathematical model. Ask
an engineer what he wants to know about a model ordinary differential
equation. Often his response will be the question “What happens if we
start the system running and then wait for a long time?” or, in engineering
jargon, “What is the steady state behavior of the system?” We already
know how to answer these questions in some special circumstances where
the steady state behavior corresponds to a rest point or periodic orbit. The
following definitions will be used to precisely describe the limiting behavior
of an arbitrary orbit.

Definition 1.165. Suppose that ¢; is a flow on R” and p € R™. A point =
in R™ is called an omega limit point {w-limit point) of the orbit through p if
there is a sequence of numbers t; < t5 < t3 < --- such that lim;_,t; = ®
and lim; o ¢¢,(p) = x. The collection of all such omega limit points is
denoted w(p) and is called the omega limit set (w-limit set) of p. Similarly,
the a-limit set a(p) is defined to be the set of all limits lim;_,, @y, (p) where
t;1 > to >ty > --- and lim;_, oo t; = —00.

Definition 1.166. The orbit of the point p with respect to the flow ¢; is
called forward complete if t — ¢(p) is defined for all ¢ > 0. Also, in this
case, the set {¢¢(p) : t = 0} is called the forward orbit of the point p. The
orbit is called backward complete if ¢ — ¢;(p) is defined for all ¢ < 0 and
the backward orbit is {¢:(p) : t < 0}.

Proposition 1.167. The omega limit set of a point is closed and invar-
ant.

Proof. The empty set is closed and invariant.

Suppose that w(p) is not empty for the flow ¢; and x € w(p). Consider
¢ (x) for some fixed T € R. There is a sequence t; < tg < i3 < --- with
t; —ocoand ¢, (p) >z asi— oo. Notethat t1+T <t +T <t3+T < -
and that ¢, 117(p) = ¢d7 (¢, (p)). By the continuity of the flow, we have that
¢ (d1;(p)) = ¢r(zx) as i — oo. Thus, ¢r(x) € w(p), and therefore w(p) is
an invariant set.

To show w(p) is closed, it suffices to show that w(p) is the intersection of
closed sets. In fact, we have that

w(p) = ﬂ closure {¢:(p) : t > 7}. O
720
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Proposition 1.168. Suppose that p € R™ and the orbit of the flow ¢,
through the point p is forward complete. If the forward orbit of p has com-
pact closure, then w(p) is nonempty, compact, and connected.

Proof. The sequence {¢,(p)}32; is contained in the compact closure of

n=1
the orbit through p. Thus, it has at least one limit point z. In fact, there
is an infinite sequence of integers n; < ng < --- such that ¢,,(p) — = as

+ — oo. Hence, = € w(p), and therefore w(p) # 0.

Since w(p) is a closed subset of the compact closure of the orbit through
p, the set w(p) is compact.

To prove that w(p) is connected, suppose to the contrary that there
are two disjoint open sets U and V whose union contains w(p) such that
w(p)NU # 0 and w(p) NV # 0. There is some t; > 0 such that ¢, (p) € U
and some ¢3 > t; such that ¢, (p) € V. But the set K = {¢¢(p) : t; <t <
to} is the continuous image of an interval, hence a connected set. Thus K
cannot be contained in U U V. In particular, there is at least one 7 > 0
such that ¢, (p) is not in this union.

Similarly we can construct a sequence 73 < 75 < -+ such that

lim 7 = oo
i—00

and for each i the point ¢.,(p) is in the complement of U U V. By the
compactness, the sequence {¢,,(p)}32; has a limit point z. Clearly, z is
also in w(p) and in the complement of U U V. This is a contradiction. 0O

Exercise 1.169. Construct examples to show that the compactness hypothesis
of Proposition 1.168 is necessary.

Exercise 1.170. Show that a reparametrization of a flow does not change its
omega limit sets. Thus, an omega limit set is determined by an orbit and its
direction, not the parametrization of the orbit.

Exercise 1.171. Suppose that zo is a rest point for the differential equation
© = f(z) with flow ¢, and V is a Lyapunov function at zo. If, in addition, there
is a neighborhood W of the rest point xo such that, for each point p € W\ {0},
the function V' is not constant on the forward orbit of p, then z¢ is asymptotically
stable. Hint: The point o is Lyapunov stable, If it is not asymptotically stable,
then there is a point p in the domain of V' whose omega limit set w(p) is also
n the domain of V' such that w(p) # {xo}. Show that V is constant on this
omega limit set (the constant is the greatest lower bound of the range of V on
the forward orbit through p).

Exercise 1.172. Suppose that the differential equation & = f(x) with flow ¢,
has a compact invariant set K, and V : K — R is a continuously differentiable
function such that V(z) < 0 for every z € K. If 0 is the largest invariant set in

_ lze K: V(rz:} = 0}, then every solution in K approaches § as ¢ — oo.
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Figure 1.26: A positively invariant annular region for a flow in the plane.

The w-limit set of a point for a flow in R™ with n > 3 can be very .

complicated; for example, it can be a fractal. But the situation in R? is
much simpler. The reason is the deep fact about the geometry of the plane
stated in the next theorem.

Theorem 1.173 (Jordan Curve Theorem). A simple closed (continu-
ous) curve in the plane divides the plane into two connected components,
one bounded and one unbounded, each with the curve as boundary.

Proof. Modern proofs of this theorem use algebraic topology (see for ex-
ample [212]). O

This result will play a central role in what follows.

The fundamental result about limit sets for flows of planar differential
equations is the Poincaré-Bendixson theorem. There are several versions
of this theorem; we will state two of them. The main ingredients of their
proofs will be presented later in this section beginning with Lemma 1.187.

Theorem 1.174 (Poincaré—Bendixson). If  is a nonempty compact

w-limit set of a flow in R?, and if Q does not contain a rest point, then Q
18 a periodic orbit.

A set S that contains the forward orbit of each of its elements is called
positively invariant. An orbit whose a-limit set is a rest point p and whose
w-limit is a rest point ¢ is said to connect p and g. Note: the definition of
a connecting orbit allows p = q.
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Figure 1.27: A limit cycle in the plane.

Theorem 1.175. Suppose that ¢; is a flow on R® and S C R? is a P0s-
itwely invariant set with compact closure. If p € S and ¢ has at most a

- fimte number of rest points in the closure of S, then w(p) is either (i) a

rest point, (it) a periodic orbit, or (iii) a union of finitely many rest points
and a nonempty finite or countable infinite set of connecting orbits.

Exercise 1.176. Illustrate possibility (#i) of the last theorem with an example
having an infinite set of connecting orbits.

Exercise 1.177. We have assumed that all flows are smooth. Is this hypothesis
required for all the theorems in this section on w-limit sets?

- Definition 1.178. A limit cycle ' is a periodic orbit that is either the

w-limit set or the a-limit set of some point that is in the phase space but

not in I,

A “conceptual” limit cycle is illustrated in Figure 1.27. In this figure,

- the limit cycle is the w-limit set of points in its interior (the bounded
- component of the plane with the limit cycle removed) and its exterior
~ (the corresponding unbounded component of the plane). A limit cycle that
- is generated by numerically integrating a planar differential equation is
~ depicted in Figure 1.28 (see [33]).

Sometimes the following alternative definition of a limit cycle is given. A

- ‘limit cycle” is an isolated periodic orbit; that is, the unique periodic orbit
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Figure 1.28: Two orbits are numerically computed for the system & =
0.5z —y +0.1(z% — y®)(z — y), ¥ = = + 0.5y + 0.1(z? — y?)(z + y): one with
initial value (z,y) = (0.5,0), the other with initial value (z,y) = (0,5).
Both orbits approach a stable limit cycle.

in some open subset of the phase space. This definition is not equivalent
to Definition 1.178 in general. The two definitions, however, are equivalent
for real analytic systems in the plane (see Exercise 1.182).

An annular region is a subset of the plane that is homeomorphic to the
closed annulus bounded by the unit circle at the origin and the concentric
circle whose radius is two units in length.

The following immediate corollary of the Poincaré—Bendixson theorem
is often applied to prove the existence of limit cycles for planar systems.

Theorem 1.179. If a flow in the plane has a positively invariant annular
region S that contains no rest points of the flow, then S contains at least
one periodic orbit. If in addition, some point in S is in the forward orbit
of a point on the boundary of S, then S contains at least one limit cycle.

‘We will discuss two applications of Theorem 1.179 where the main idea
is to find a rest-point free annular region as depicted in Figure 1.26.
The first example is provided by the differential equation

d=—y+z(l—-22-9?), s=z+y(1-22-9%. (1.46)
Note that the annulus § bounded by the circles with radii % and 2, respec-
tively, contains no rest points of the system. Let us show that S is positively
invariant. To prove this fact, consider the outer normal vector N on 85 that
is the restriction of the vector field N(z,y) = (z,y,7,y) € R? x R? to 9§

and compute the dot product of N with the vector field corresponding to
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 the differential equation. In fact, the dot product
t’(1-a® —y?) + 9P (1 - 2® —9?) = (2® +42)(1 - 2% — )

- 5 positive on the circle with radius § and negative on the circle with radius
- 2. Therefore, S is positively invariant and, by Theorem 1.179, there is at
least one limit cycle in S.

The differential equation (1.46) is so simple that we can find a formula
~ for its flow. In fact, by changing to polar coordinates (r, 8), the transformed
- System

r=r(l-7r%), éd=1

: decouples, and its flow is given by

6u(r,6) = ((F%;ﬂ)%’”t)'

- Note that ¢;(1,0) = (1,6 +t) and, in particular, $2r(1,0) = (1,0 + 2x).
- Thus, the unit circle in the plane is a periodic orbit with period 27. Here,
- of course, we must view 6 as being defined modulo 27, or, better yet, we
- must view the polar coordinates as coordinates on the cylinder T x R (see
-~ Section 1.8.5).

- If the formula for the flow (1.47) is rewritten in rectangular coordinates,
_iﬁghen the periodicity of the unit circle is evident. In fact, the periodic solu-
n starting at the point (cos#,sin ) € R? (in rectangular coordinates) at

0 1s given by

(1.47)

t = (2(t),y(t)) = (cos(f + t),sin(8 + t)).

t 15 easy to see that if » # 0, then the w-limit set w((r,0)) is the entire
t circle. Thus, the unit circle is a limit cycle.
-‘ If we consider the positive x-axis as a Poincaré section, then we have

2 4w 1

z%e H

Pl = (=) -

Here P(1) =1 and P'(1) = e~ < 1. In other words, the intersection point
of the limit cycle with the Poincaré section is a hyperbolic fixed point of
the Poincaré map; that is, the linearized Poincaré map has no -eigenvalue
on the unit circle of the complex plane. In fact, here the single eigenvalue
of the linear transformation of R given by z — P’(1)z is inside the unit
circle. It should be clear that in this case the limit cycle is an asymptotically
ble periodic orbit. We will also call such an orbit a hyperbolic stable limit
cycle. (The general problem of. the stability of periodic orbits is discussed
“in Chapter 2.) :
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As a second example of the application of Theorem 1.179, let us consider 2 > ~ e
the very important differential equation Tr—— e S
6+ M\ +sinf=p -
# L //f,_M S
where A > 0 and u are constants, and 8 is an angular variable; that is, 8 is { >
defined modulo 2. This differential equation is a model for an unbalanced | @ 0
rotor or pendulum with viscous damping A§ and external torque u. A
Consider the equivalent first order system = \\\\ T
s
f=v, ©=—sind+p— N, (1.48) ~_ . -

e

and note that, since € is an angular variable, the natural phase space for
this system is the cylinder T x R. With this interpretation we will show
the following result: If |u| > 1, then system (1.48) has a globally attracting
limit cycle. The phrase “globally attracting limit cycle” means that there
is a limit cycle I" on the cylinder and T is the w-limit set of every point on
the cylinder. In other words, the steady state behavior of the unbalanced
rotor, with viscous damping and sufficiently large torque, is stable periodic
motion. (See [143] for the existence of limit cycles in case |u| < 1.) _

The system (1.48) with |g| > 1 has no rest points. (Why?) Also the |
quantity —sinf + p — Av is negative for sufficiently large positive values
of v, and it is positive for negative values of v that are sufficiently large
in absolute value. Therefore, there are numbers v_ < 0 and vy > 0 such
that every forward orbit is contained in the compact subset of the cylinder
A= {(r,8) : v- < v < v} In addition, A is diffeomorphic to an annular
region in the plane. It follows that the Poincaré-Bendixson theorem is valid
in A, and therefore the w-limit set of every point on the cylinder is a limit.
cycle.

Although there are several ways to prove that the limit cycle is unique,
let us consider a proof based on the following propositions: (i) If the diver-
gence of a vector field is everywhere negative, then the flow of the wvector
field contracts volume (see Exercise 2.22). (i1) Every periodic orbit in the
plane surrounds a rest point (see Exercise 1.189). (A replacement for the
first proposition is given in Exercise 1.200; an alternate method of proof is
suggested in Exercise 1.202.)

To apply the propositions, note that the divergence of the vector field for
system (1.48) is the negative number —A. Also, if || > 1, then this system
has no rest points. By the second proposition, no periodic orbit of the
system is contractable on the cylinder (see panel (a) of Figure 1.29). Thus,
if there are two periodic orbits, they must bound an invariant annular
region on the cylinder as in panel (b) of Figure 1.29. But this contradicts
the fact that the area of the annular region is contracted by the flow. [t
follows that there is a unique periodic orbit on the cylinder that is a globally
attracting limit cycle.

(a) ' (h)

Figure 1.29: Panel (a) depicts a contractable periodic orbit on a cylinder.
Note that the region € in panel (a) is simply connected. Panel (b) de-
. picts two periodic orbits that are not contractable; they bound a multiply
connected region £ on the cylinder.

4 Exercise 1.180. Give a direct proof that the point (1//2, 1/+/2) on the unit
cirele 1s an w-limit point of the point (3,8) for the flow of system (1.46).

" Exercise 1.181. Discuss the phase portrait of system (1.48) for |u| < 1.

- Exercise 1.182. (a) Show that the set containing “limit cycles” defined as
- isolated periodic orbits is a proper subset of the set of limit cycles. Also, if the
differential equation is a real analytic planar autonomous system, then the two
~ concepts are the same. Hint: Imagine an annular region consisting entirely of
~ periodic orbits. The boundary of the annulus consists of two periodic orbits that
- might be limit cycles, but neither of them is isolated. "I'o prove that an isolated
periodic orbit I is a limit cycle, show that every section of the flow at a point
- p€ I has a subset that is a Poincaré section at p. For an analytic system, again
consider a Poincaré section and the associated Poincaré map P. Zeros of the
analytic displacement function £ — P(€) — £ correspond to periodic orbits. (b)
Sflovs that the polynomial (hence real analytic) system in R? given by

:Z'I:—‘y+112(1—$ *y):
y=z+y(1 -2’ -7,
i=1-2"—y° (1.49)

 has limit cycles that are not isolated. (¢} Determine the long-term behavior of
 the system (1.49). In particular, show that

. 1
Jm z(t) = 2(0) — 5 In(2%(0) +3*(0)).
' Exercise 1.183. Show that the system

:b:aw—y+:cy2, y=x+ay+y3
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has an unstable limit cycle for @ < 0 and. no limit cycle for a > 0. Hint: Change
to polar coordinates.

- such sequences can be found in ¥. Indeed, we can choose the rectifying
- neighborhood so that the image of the Poincaré section is a line segment
transverse to the rectified flow. In this case, it is clear that if an orbit
-~ hias one of its points in the rectifying neighborhood, then this orbit passes
~ through the Poincaré section.

By choosing a local coordinate on %, let us assume that ¥ is an open
- interval. Working in this local chart, there are open subintervals J; at z;
't. and J; at z3 such that J;NJ; = 0. Moreover, by the definition of limit sets,
there is an integer m such that ¢, (p) € Ji; an integer n such that 8n >t
~aud o, (p) € J2; and an integer £ such that t; > s, and ¢4, (p) € J;. By
- Lemma 1.187, the point ¢, (p) must be between the points ¢, (p) and
- &,(p) on X. But this is impossible because the points ¢;  (p) and ¢,,(p)
- are in Jq, whereas ¢,_(p) is in J. o

Exercise 1.184. Show that the system

L 2, .2 L 1
t=y+a(z®+y l)smmz_}_yzﬁl,

. 2 2 . 1
y:—$+’y($ +y ﬁl)Slnm

has infinitely many limit cycles in the unit disk.

Exercise 1.185. Prove: An analytic planar system cannot have infinitely many
limit cycles that accumulate on a periodic orbit. Note: This (easy) exercise isa
special case of a deep result: An analytic planar system cannot have infinitely
many limit cycles in a compact subset of the plane; and, a polynomial system
cannot have infinitely many limit cycles (see [79] and [126]).

Exercise 1.186. Consider the differential equation ~ We are now ready to prove the Poincaré-Bendixson theorem (Theo-
i =—ag(g® +2" Y2, = —a@ +907 7 +b mm 1.174): If Q is a nonempty compact w-limit set of a flow in R2, and
- f Q does not contain a rest point, then Q is a periodic orbit.
where a and b are positive parameters. The model represents the flight of a g
projectile, with speed a and heading toward the origin, that is moved off course
by a constant force with strength b. Determine conditions on the parameters
that ensure the solution starting at the point (z,y) = (p,0), for p > 0, reaches
the origin. Hint: Change to polar coordinates and study the phase portrait of
the differential equation on the cylinder. Explain your result geometrically. The
differential equation is not defined at the origin. Is this a problem? 1

:Eroof. Suppose that w(p) is nonempty, compact, and contains no rest
- points. Choose a point g € w(p). We will show first that the orbit through
q 1s closed.

- Consider w(g). Note that w(g) C w(p) and w(q) is not empty. (Why?)
Let 2 € w(g). Since z is not a rest point, there is a section ¥ at z and a
. sequence on ¥ consisting of points on the orbit through ¢ that converges
~ to z. These points are in w(p). But, by the last corollary, this is impossible
- unless every point in this sequence is the point z. Since g is not a rest point,
: his implies that ¢ lies on a closed orbit T, as required. In particular, the
limit set w(p) contains the closed orbit I'.

- To complete the proof we must show w(p) C T If w(p) # T, then we will
- use the connectedness of w(p) to find a sequence {p,}32, C w(p) \ T that
‘converges to a point z on I'. To do this, consider the union A; of all open
 balls with unit radius centered at some point in I. The set A; \ I' must
contain a point in w(p). If not, consider the union A4, 2+ (respectively Ay /4)
of all open balls with radius % (respectively é) centered at some point in
I Then the set A;,4 together with the complement of the closure of Ao
- disconnects” w(p), in contradiction. By repeating the argument with balls
‘whose radii tend to zero, we can construct a sequence of points in w(p) \ I
- whose distance from I tends to zero. Using the compactness of w(p), there
15 a subsequence, again denoted by {p,}32,, in w(p) \ T that converges to
‘apoint z € I'.

- Let U denote an open set at z such that the flow is rectified in a diffeo-
“morphic image of U. There is some integer n such that p, € U. But, by
‘using the rectification lemma, it is easy to see that the orbit through p,
‘has a point y of intersection with some Poincaré section & at z. Because

The next two lemmas are used in the proof of the Poincaré Bendixson
theorem. The first lemma is a corollary of the Jordan curve theorem.

Lemma 1.187. If ¥ is a section for the flow ¢; and if p € R?, then the
orbit through the point p intersects ¥ in a monotone sequence; that is, if
b1, (D), ¢1x(P), and ¢g,(p) are on 5 and if t; < to < tz, then ¢4, (p) hes
strictly between ¢z, (p) and ¢, (p) on T or ¢, (p) = ¢1,(P) = ¢1a (D).

Proof. The proof is left as an exercise. Hint: Reduce to the case where
tq, ta, and t3 correspond to consecutive crossing points. Then, consider the
curve formed by the union of {¢:(p) : t1 < t < t2} and the subset of ¥
between ¢y, (p) and ¢, (p). Draw a picture. ) e

Lemma 1.188. If Y is a section for the flow ¢y and if p € R?, then w(p)N%
contains at most one point.

Proof. The proof is by contradiction. Suppose that w(p) N X contains at
least two points, 1 and z5. By rectification of the flow at x; and at x5, that
is, by the rectification lemma (Lemma 1.120), it is easy to see that there are
sequences {¢s,(p) 12, and {¢, (p)}52; in ¥ such that lim; .o ¢, (p) = 1)
and lim; . ¢s,(p) = z2. By the rectification lemma in Exercise 1.125,
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pp is not in T, the points y and z are distinct elements of the set w(p) NE,
in contradiction to Lemma 1.188. 0

Exercise 1.189. Suppose that v is a periodic orbit of a smooth flow defined
on R2. Use Zorn’s lemma to prove that -y surrounds a rest point of the flow. That
is, the bounded component of the plane with the periodic orbit removed contains
a rest point. Note: See Exercise 1.217 for an alternative proof.

Exercise 1.190. Use Exercise 1.189 to prove Brouwer’s fixed point theorem for
the closed unit disk ID in R%. Hint: First prove the result for a smooth function
f : D — D by considering the vector field f{z) — x, and then use the following
result: A continuous transformation of I} is the uniform limit of smooth transfor-
mations [123, p. 253].

Exercise 1.191. Suppose that a closed ball in R™ is positively invariant under
the flow of an autonomous differential equation on R™. Prove that the ball con-
tains a rest point or a periodic orbit. Hint: Apply Brouwer’s fixed point theorem
to the time-one map of the flow. Explain the differences between this result and
the Poincaré-Bendixson theorem.

Exercise 1.192. Construct an example of an (autonomous) differential equa-
tion defined on all of R? that has an (isolated) limit cycle but no rest points.

Exercise 1.193. Prove: A nonempty w-limit set of an orbit of a gradient sys-
tem consists entirely of rest points.

Exercise 1.194. Is a limit cycle isolated from all other periodic orbits? Hint:
Consider planar vector fields of class C' and those of class C'“—real analytic
vector fields. Study the Poincaré map on an associated transversal section.

The next theorem can often be used to show that no periodic orbits exist.

Proposition 1.195 (Dulac’s Criterion). Consider a smooth differential

equation on the plane

&= g(ﬂ:, y)’ Y= h(SE, y)'

If there is a smooth function B(z,y) defined on a simply connected region
Q C R™ such that the quantity (Bg). + (Bh), is not identically zero and of
fized sign on Q, then there are no periodic orbits in Q.

Proof. We will prove Bendixson’s criterion, which is the special case of

the theorem where B(z,y) = 1 (see Exercise 1.198 for the general case). In
other words, we will prove that if the divergence of f := (g{z,y), h(z.7))
given by

div f(z,y) := go(2,y) + hy(2, )

is not identically zero and of fixed sign in a simply connected region €,
then there are no periodic orbits in Q.
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Suppose that I' is a closed orbit in Q and let G denote the bounded
- tegion of the plane bounded by I'. Note that the line integral of the one form
gdy—hdz over I' vanishes. (Why?) On the other hand, by Green’s theorem,
‘{s.i;e ntegral can be computed by integrating the two-form (div f ) dzdy over
{3 Since, by the hypothesis, the divergence of f does not vanish, the integral
"t%’fﬁ the two-form over G does not vanish, in contradiction. Thus, no such
-~ periodic orbit can exist. O

‘The function B mentioned in the last proposition is called a Dulac function.
!_We end this section with a result about global asymptotic stability in
. the plane.

g

Theorem 1.196. Consider a smooth differential equation on the plane

=g(z,y), §=~h{z,y)

-;z;f?_at has the origin as o rest point. Let J denote the Jacobian matriz for
i-_fze transformation (z,y) = (g9(z,v), M(z,y)), and let ¢, denote the flow of
the differential equation. If the following three conditions are satisfied, then
ithe origin is globally asymptotically stable.

- Condition 1. For each (x,y) € R?, the trace of J given by 9oz, y) +
hy(z,y) is negative.

For each (z,y) € R?, the determinant of J given by
9z (2, )y (z,9) — gy(z, y)ha (2, y) is positive.

For each (x,y) € R?, the forward orbit {pe(z,y) : 0 <
t < oo} is bounded.

Condition 2.

 Condition 3.

Proof. From the hypotheses on the Jacobian matrix, if there is a rest point
4 hie eigenvalues of its associated linearization all have negative real partsj
Therefore. each rest point is a hyperbolic attractor; that is, the basin of
attraction of the rest point contains an open neighborhood of the rest point,

7

‘i’h1< fact follows from Hartman’s theorem (Theorem 1.47) or Theorem 2.61.
In particular, the origin is a hyperbolic attractor.
.'B)’ the hypotheses, the trace of the Jacobian (the divergence of the vector

eld) is negative over the entire plane. Thus, by Bendixson’s criterion, there
e no periodic solutions.

~ Let 2 denote the basin of attraction of the origin. Using the continuity
the flow, it is easy to prove that Q is open. In addition, it is easy to
prove that the boundary of Q is closed and contains no rest points.

b We_will show that the boundary of 2 is positively invariant. If not, then
e.re is a point p in the boundary and a time T > 0 such that either o1 (p)
is in Q or such that ¢r(p) is in the complement of the closure of in
‘the plane. In the first case, since ¢7(p) is in Q, it is clear that pEQ,in
<contradiction. In the second case, there is an open set V in the complem’ent
0f the closure of £ that contains ¢1(p). The inverse image of V under the
ntinuous map ¢ is an open set U containing the boundary point p. By

o
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the definition of boundary, U contains a point g € 2. But then, ¢ is mapped
to a point in the complement of the closure of £2, in contradiction to the
fact that ¢ is in the basin of attraction of the origin.

If the boundary of Q is not empty, consider one of its points. The
(bounded) forward orbit through the point is precompact and contained
in the (closed) boundary of €. Thus, its w-limit set is contained in the
boundary of Q. Since the boundary of 2 contains no rest points, an ap-
plication of the Poincaré-Bendixson theorem shows this w-limit set is a
periodic orbit, in contradiction. Thus, the boundary is empty and € is the
entire plane. o

- Exercise 1.200. [Uniqueness of Limit Cycles] (a) Prove the following proposi-
ion: If the divergence of a plane vector field is of fixed sign in an annular region
(1 of the plane, then the associated differential equation has at most one periodic
orbit in . Hint: Use Green’s theorem. (b) Recall Dulac’s criterion from Exer-
1.198 and note that if the divergence of the plane vector field F is not of fixed
guin §2, then it might be possible to find a nonnegative function B :  —» R
h that the divergence of BF does have fixed sign in (. As an examnple, consider
‘the van der Pol oscillator,

g=y, y=-z+A1-2%y
ind the “Dulac function” B(z,y) = (2 + y® — 1)7'/2. Show that van der Pol’s
ystem has at most one limit cycle in the plane. (The remarkable Dulac function
B was discovered by L. A. Cherkas.) (c¢) Can you prove that the van der Pol
oscillator has at least one limit cycle in the plane? Hint: Change coordinates
- using the Liénard transformation

Theorem 1.196 is a (simple) special case of the “Markus-Yamabe prob-
lem.” In fact, the conclusion of the theorem is true without assuming Con-
dition 3 (see [104]).

: - 1
Exercise 1.197. Prove: If § > 0, then the origin is a global attractor for the U=y v=y— Az - §Iq)

system }: obtain the Liénard system

o= (u—v)® - du, = (u—1) — dv.

( ) ( ) ?l=v+)\(u—1u3), U= —u.
Also, the origin is a global attractor of orbits in the first quadrant for the system 3
hapter 5 we will prove that the van der Pol system has a limit cycleif A >0
fficiently small. In fact, this system has a limit cycle for each A > 0. For this
It, and for more general results about limit cycles of the important class of
ar systems of the form

= w(u—v)(u+1) — du, v =vu(v —u)(v+ 1) — dv.
(Both of these first order systems are mentioned in [229].)

Exercise 1.198. [Dulac’s Criterion] (a) Prove Proposition 1.195. (b) Use Du-

}
lac’s criterion to prove a result due to Nikolai N. Bautin: The system "

t=y—F(z), g=—g(z),
See [101, p. 154], [123, p. 215], [141, p. 267], and [183, p. 250].
Exercise 1.201. (a) Prove that the system

t=z(a+bx +cy), y=yla+pfz+yy)

has no limit cycles. Hint: Show that no periodic orbit crosses a coordinate axis
Reduce the problem to showing that there are no limit cycles in the first quadrant.
Look for a Dulac function of the form z"y®. After some algebra the problem
reduces to showing that a certain two-parameter family of lines always hasa
member that does not pass through the (open) first quadrant. '

' t=z-y-1°, g=a+y—1°
las a unique globally attracting limit cj{cle on the punctured plane. (b) Find all
rest points of the system

Exercise 1.199. (a) Suppose that the system & = f(z,y), v = g(z,y) hasa t=x-y-z", y=z+y—y",
periodic orbit I with period T and B is a positive real valued function defined on
some open neighborhood of I' (as in Dulac’s Criterion). Prove that I is a periodic

orbit of the system & = B(x,y)f(z,y), v = B(z,y)g(z,y) with period

r 1
A corok

where t — (z(t),y(t)) is a periodic solution of the original system whose orbit i&
I". (b) How does the period of the limit cycle of system (1.46) change if its vector
field is multiplied by (1 + 2% + 3?)*? Hint: The solution p of the initial valie
problem

where i is a positive odd integer and determine their stability. (¢) Prove that
ystem has a unique stable limit cycle. (d) What is the limiting shape of the
it cycle as n — oo?

xercise 1.202. Show there is a unique limit cycle for system (1.48) with
| > 1 by proving the existence of a fixed point for a Poincaré map and by
oving that every limit cycle is stable. Hint: Recall the analysis of system (1.44)
consider dv/d8.

Exercise 1.203. Can a system of the form
. i'=ys y= f('r”r) '—ﬂf’(ﬂ.’?)y,

ere f 18 a smooth function and a is a parameter, have a limit cycle? Hint:
Consider a Liénard transformation.

p=B((z(p),u(p)), p(0)=0
satisfies the identity p(t + 7) = p(t) + T
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Exercise 1.204. Draw the phase portrait of the system Exercise 1.214. Consider the van der Pol equation

. 2,2 o
t=y+22(1-2>-¢%), g§=-z i+ (2 —ei+z=0,

Exercise 1.205. [Rigid Body Motion] The Euler equations for rigid body mo-
tion are presented in Exercise 1.77. Recall that the momentum vector is given by
M = AQ where A is a symmetric matrix and Q is the angular velocity vector.
and Euler’s equation is given by M = M x 2. For v a positive definite symmetric

matrix and F a constant vector, consider the differential equation '

whete e is a real parameter. How does the stability of the trivial solution change
th ¢. Show that the van der Pol equation has a unique stable limit cycle for
= 1. What would you expect to happen to this limit cycle as e shrinks to e = 0.
t happens for € < 07

& — M G BB ‘Exercise 1.215. Find an explicit nonzero solution of the differential equation

B - 2 2. .
Here, the function M + vM represents viscous friction and F is the external b t'z"t +1=0.
force (see [16]). Prove that all orbits of the differential equation are bounded,

: _ =12 e 3v—1/2
and therefore every orbit has a compact w-limit set. _ efine new variables u = 2(3t2°)™ /%, v = —42(32") and show that

dv  3v{v— u?)

Exercise 1.206. (a) Prove that the origin is a center for the system #+&%+7 =
du ™ 2u(v—u)’

0. (b) Show that this system has unbounded orbits. (c) Describe the boundary

between the bounded and unbounded orbits?

: : Draw the ph trai i :
Exercise 1.207. Draw the phase portrait for the system & = z® — 2°. Is the : ;r e phase portrait of the corresponding first order system

. . s ey . = _1— . - . . a? - . .
solution with initial conditions #(0) = 4 and #(0) = 0 periodic? ks = 2u(v — ), 3 = 3u(w — u?).
Exercise 1.208. Draw the phase portrait of the Hamiltonian system Z + z ~

2 = 0. Give an explicit formula for the Hamiltonian and use it to justify the

features of the phase portrait.

Exercise 1.216. [Yorke’s Theorem] A theorem of James Yorke states that if
U CR" = R™ is Lipschitz on the open set U with Lipschitz constant L and
is a periodic orbit of © = f(x) contained in U, then the period of I is larger
than 2mw/L (see [238]). Use Yorke’s theorem to estimate a lower bound for the
period of the limit cycle solution of the system in Exercise 1.201 part (a). Note:
The period of the periodic orbit is approximately 7.5. Hint: Use the mean value
_;,eorem and note that the norm of a matrix (with respect to the usual Euclidean
orm) is the square root of the spectral radius of the matrix transpose times the

1 matrix (that is; ||Al| = +/p(AT A)).

xercise 1.217. [Poincaré index| Let C be a simple closed curve not passing
hrough a rest point of the vector field X in the plane with components (f,9)
‘eﬁne the Poincaré index of X with respect to C to be

Exercise 1.209. Let ¢ — x(t) denote the solution of the initial value problem
g+z+z+2°=0, =(0)=1, (0)=0.
Determine lim z(t).
t—oo

Exercise 1.210. Show that the system

g 2,3 2 o 2, 12

t=g-—y—(+5y)e, Y=oty -("+3y N
has a unique limit cycle.

Exercise 1.211. Find the rest points in the phase plane of the differential
equation &+ (&7 + 2? — 1)+ 2z = 0 and determine their stability. Also, show that
the system has a unique stable limit cycle.

I(X,C) = %/Cdarctan(%},

' it is the total change the angle (f(z,v), 9(z,y)) makes with respect to the (posi-
tive) z-axis as (x,y) traverses C exactly once counter clockwise (see, for example,
159] or [141]). (a) Prove: The index is an integer. (b) Prove: The index does not
change with a deformation of C (as long as the deformed curve does not pass
hrough a rest point). (¢) Prove: If C is smooth and 7" is a continuous choice of
‘the tangent vector along this curve, then I(1,C) = 1. In particular, the index
of a vector field with respect to one of its closed orbits is unity. (d) The index
of a point with respect to X is defined to be the index of X with respect to an
admissible curve C that surrounds this point and no other rest point of X. Prove:
e ndex of a regular point (a point that is not a rest point) is zero. () Prove:
A periodic orbit surrounds at least one rest point.

Exercise 1.212. Determine the w-limit set of the solution of the system
{
d=1—-z+1° g=y(l -z +y)
with initial condition z(0) = 10, y(0) = 0.
Exercise 1.213. Show that the system
. ; 1 '
b=-y+ay, G=z+5(" -1

has periodic solutions, but no limit cycles.



