ADJOINT EQUATION AND MELNIKOV FUNCTION

STEVE SCHECTER

1. Adjoint equation

Consider the linear differential equation $\dot{x}=A(t) x(x=n \times 1$ column vector, $A=n \times n$ matrix). The adjoint equation is $\dot{y}=-A(t)^{T} y$ ($y=n \times 1$ column vector) or equivalently $\dot{w}=-w A(t)(w=1 \times n$ row vector $)$. I'll use the second form.

Proposition 1.1. If $x(t)$ is a solution of $\dot{x}=A(t) x$ and $w(t)$ is a solution of $\dot{w}=-w A(t)$, the $w(t) x(t)$ (row vector times column vector) is constant.

Proof.

$$
\frac{d}{d t} w(t) x(t)=\dot{w} x+w \dot{x}=-w A x+w A x=0
$$

Proposition 1.2. If $\Phi(t)$ is a fundamental matrix solution of $\dot{x}=A(t) x$, then $\Phi^{-1}(t)$ is a fundamental matrix solution of $\dot{w}=-w A(t)$. (It's rows are linearly independent solutions.)

Proof.

$$
\begin{aligned}
0=\frac{d}{d t} I=\frac{d}{d t}\left(\Phi^{-1}(t)\right. & \Phi(t))=\left(\frac{d}{d t} \Phi^{-1}(t)\right) \Phi(t)+\Phi^{-1}(t)\left(\frac{d}{d t} \Phi(t)\right) \\
& =\left(\frac{d}{d t} \Phi^{-1}(t)\right) \Phi(t)+\Phi^{-1}(t) A(t) \Phi(t) \Rightarrow \frac{d}{d t} \Phi^{-1}(t)=-\Phi^{-1}(t) A(t)
\end{aligned}
$$

Therefore the rows of $\Phi^{-1}(t)$ are solutions of $\dot{w}=-w A(t)$, and of course they are linearly independent.

Corollary 1.3. For $n=2$, let

$$
\Phi(t)=\left(\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right)
$$

be a fundamental matrix solution of $\dot{x}=A(t) x$. Then a fundamental matrix solution of $\dot{w}=-w A(t)$ is

$$
\Phi^{-1}(t)=\frac{1}{a(t) d(t)-b(t) c(t)}\left(\begin{array}{cc}
d(t) & -b(t) \\
-c(t) & a(t)
\end{array}\right)
$$

[^0]The point of the Corollary is that for $n=2$, if you know just one solution of $\dot{x}=A(t) x$, i.e., one column of $\Phi(t)$, and you know $\operatorname{det} \Phi(t)$ (which can be calculated using Liouville's formula), then you know one row of $\Phi^{-1}(t)$, i.e., one solution of $\dot{w}=-w A(t)$.

Recall that the state transition matrix of $\dot{x}=A(t) x$ is $\Phi(t, s)$, with the property that for any solution, $x(t)=\Phi(t, s) x(s)$. Similarly, the state transition matrix of $\dot{w}=-w A(t)$ is $\Psi(t, s)$, with the property that for any solution, $w(t) \Psi(t, s)=w(s)$.

Proposition 1.4. $\Psi(t, s)=\Phi(t, s)$.
Proof. Fix t. $\Psi(t, t) \Phi(t, t)=I \cdot I=I$. Also

$$
\begin{aligned}
\frac{\partial}{\partial s}(\Psi(t, s) \Phi(s, t))=\left(\frac{\partial}{\partial s} \Psi(t, s)\right) \Phi(s, t) & +\Psi(t, s)\left(\frac{\partial}{\partial s} \Phi(s, t)\right) \\
& =-\Psi(t, s) A(s) \Phi(s, t)+\Psi(t, s) A(s) \Phi(s, t)=0
\end{aligned}
$$

Therefore, as a function of s with t fixed, $\Psi(t, s) \Phi(s, t) \equiv I$, so $\Psi(t, s)=\Phi^{-1}(s, t)=$ $\Phi(t, s)$.

2. Melnikov integral

Consider a differential equation $\dot{x}=f(x, \mu), x \in \mathbb{R}^{2}, \mu \in \mathbb{R}$, with two hyperbolic saddles $p_{-}(\mu)$ and $p_{+}(\mu)$. We assume that for $\mu=0$ there is a solution $x_{*}(t)$ with $\lim _{t \rightarrow-\infty} x_{*}(t)=$ $p_{-}(0)$ and $\lim _{t \rightarrow \infty} x_{*}(t)=p_{+}(0)$. We are interested in whether this connection between equilibria breaks as the parameter μ changes.

Let $x_{*}(0)=x_{0}$. The velocity vector of $x_{*}(t)$ at $t=0$ is

$$
\dot{x}_{*}(0)=f\left(x_{0}, 0\right)=\left(f_{1}\left(x_{0}, 0\right), f_{2}\left(x_{0}, 0\right)\right) .
$$

Let

$$
u_{0}=\frac{1}{\left\|f\left(x_{0}, 0\right)\right\|^{2}}\left(-f_{2}\left(x_{0}, 0\right), f_{1}\left(x_{0}, 0\right)\right),
$$

which is orthogonal to $f\left(x_{0}, 0\right)$. Consider a line segment Σ through x_{0} in the direction $u_{0} ; \Sigma$ is given as $x=x_{0}(\xi)=x_{0}+\xi u_{0},|\xi|<\alpha$. (Vectors in this paragraph are column vectors.)

Let $x_{-}(t, \mu)$ be a family of solutions of $\dot{x}=f(x, \mu)$ with
(1) $x_{-}(0, \mu) \in \Sigma$,
(2) $\lim _{t \rightarrow-\infty} x_{-}(t, \mu)=p_{-}(\mu)$, and
(3) $x_{-}(t, 0)=x_{*}(t)$.

These solutions lie in the unstable manifold of $p_{-}(\mu)$.
Similarly, let $x_{+}(t, \mu)$ be a family of solutions of $\dot{x}=f(x, \mu)$ with
(1) $x_{+}(0, \mu) \in \Sigma$,
(2) $\lim _{t \rightarrow \infty} x_{+}(t, \mu)=p_{+}(\mu)$, and
(3) $x_{+}(t, 0)=x_{*}(t)$.

These solutions lie in the stable manifold of $p_{+}(\mu)$.
We have

$$
x_{-}(0, \mu)=x_{0}+\xi_{-}(\mu) u_{0}, \quad x_{+}(0, \mu)=x_{0}+\xi_{+}(\mu) u_{0}, \quad \xi_{-}(0)=\xi_{+}(0)=0
$$

We define the separation function

$$
S(\mu)=\xi_{-}(\mu)-\xi_{+}(\mu)
$$

If $S(\mu)=0$, then there is a solution of $\dot{x}=f(x, \mu)$ that goes from $p_{-}(\mu)$ to $p_{+}(\mu)$. In other words, the unstable manifold of $p_{-}(\mu)$ meets the stable manifold of $p_{+}(\mu)$. We have $S(0)=0$, and we want to calculate $S^{\prime}(0)=\xi_{-}^{\prime}(0)-\xi_{+}^{\prime}(0)$.

Let $\psi_{0}=\left(-f_{2}\left(x_{0}\right) \quad f_{1}\left(x_{0}\right)\right)$ (a row vector). Then

$$
\frac{d \xi_{ \pm}}{d \mu}(0)=\psi_{0} \frac{d \xi_{ \pm}}{d \mu}(0) u_{0}=\psi_{0} \frac{\partial x_{ \pm}}{\partial \mu}(0,0)
$$

We calculate:

$$
\frac{\partial^{2} x_{-}}{\partial t \partial \mu}(t, \mu)=\frac{\partial^{2} x_{-}}{\partial \mu \partial t}(t, \mu)=\frac{\partial}{\partial \mu} f\left(x_{-}(t, \mu), \mu\right)=D_{x} f\left(x_{-}(t, \mu), \mu\right) \frac{\partial x_{-}}{\partial \mu}(t, \mu)+\frac{\partial f}{\partial \mu}\left(x_{-}(t, \mu), \mu\right) .
$$

Setting $\mu=0$ we find that $\frac{\partial x_{-}}{\partial \mu}(t, 0)$ satisfies the inhomogeneous linear differential equation

$$
\begin{equation*}
\dot{v}=D_{x} f\left(x_{*}(t), 0\right) v+\frac{\partial f}{\partial \mu}\left(x_{*}(t), 0\right) . \tag{1}
\end{equation*}
$$

Let the state transition matrix of the homogeneous linear differential equation $\dot{v}=D_{x} f\left(x_{*}(t), 0\right) v$ be $\Phi(t, s)$. By the variation of parameters formula, the solution of (1) with $v(-T)$ given is

$$
v(t)=\Phi(t,-T) v(-T)+\int_{-T}^{t} \Phi(t, s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s
$$

Let $\psi(t)$ denote the solution of the adjoint equation $\dot{w}=-w D_{x} f\left(x_{*}(t), 0\right)$ with initial condition $\psi(0)=\psi_{0}$. Then

$$
\begin{aligned}
&(2) \frac{d \xi_{-}}{d \mu}(0)=\psi(0) \frac{\partial x_{-}}{\partial \mu}(0,0)=\psi(0)\left(\Phi(0,-T) \frac{\partial x_{-}}{\partial \mu}(-T, 0)+\int_{-T}^{0} \Phi(0, s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s\right) \\
&=\psi(-T) \frac{\partial x_{-}}{\partial \mu}(-T, 0)+\int_{-T}^{0} \psi(s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s
\end{aligned}
$$

Proposition 2.1. $\psi(t)=\exp \left(-\int_{0}^{t} \operatorname{div} f\left(x_{*}(s), 0\right) d s\right)\left(-\dot{x}_{* 2}(t) \quad \dot{x}_{* 1}(t)\right)$.
Proof. One solution of the linear differential equation $\dot{v}=D_{x} f\left(x_{*}(t), 0\right) v$ is $\dot{x}_{*}(t)=\left(\dot{x}_{* 1}, \dot{x}_{* 2}\right)$. Suppose $\left(\dot{x}_{*}(t) \quad v(t)\right)$ is a fundamental matrix solution of $\dot{v}=D_{x} f\left(x_{*}(t), 0\right) v$ with determinant 1 at $t=0$. By Liouville's Formula, the determinant at time t is

$$
\exp \left(\int_{0}^{t} \operatorname{tr} D_{x} f\left(x_{*}(s), 0\right) d s\right)=\exp \left(\int_{0}^{t} \operatorname{div} f\left(x_{*}(s), 0\right) d s\right)
$$

The proposition then follows from Corollary 1.3.

Corollary 2.2. $\psi(t) \rightarrow 0$ exponentially as $t \rightarrow \pm \infty$.
From the corollary, in (2),

$$
\lim _{T \rightarrow \infty} \psi(-T) \frac{\partial x_{-}}{\partial \mu}(-T, 0)=0 \cdot \frac{\partial p_{-}}{\partial \mu}(0)=0 .
$$

Therefore

$$
\frac{d \xi_{-}}{d \mu}(0)=\int_{-\infty}^{0} \psi(s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s
$$

Similarly,

$$
\frac{d \xi_{+}}{d \mu}(0)=\int_{\infty}^{0} \psi(s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s
$$

Therefore

$$
S^{\prime}(0)=\xi_{-}^{\prime}(0)-\xi_{+}^{\prime}(0)=\int_{-\infty}^{\infty} \psi(s) \frac{\partial f}{\partial \mu}\left(x_{*}(s), 0\right) d s
$$

The integral is called a Melnikov integral.

[^0]: Date: September 13, 2012.

