
ADJOINT EQUATION AND MELNIKOV FUNCTION

STEVE SCHECTER

1. Adjoint equation

Consider the linear differential equation ẋ = A(t)x (x = n× 1 column vector, A = n× n

matrix). The adjoint equation is ẏ = −A(t)T y (y = n × 1 column vector) or equivalently
ẇ = −wA(t) (w = 1× n row vector). I’ll use the second form.

Proposition 1.1. If x(t) is a solution of ẋ = A(t)x and w(t) is a solution of ẇ = −wA(t),
the w(t)x(t) (row vector times column vector) is constant.

Proof.
d

dt
w(t)x(t) = ẇx+ wẋ = −wAx+ wAx = 0.

�

Proposition 1.2. If Φ(t) is a fundamental matrix solution of ẋ = A(t)x, then Φ−1(t) is a
fundamental matrix solution of ẇ = −wA(t). (It’s rows are linearly independent solutions.)

Proof.

0 =
d

dt
I =

d

dt

(

Φ−1(t)Φ(t)
)

=

(

d

dt
Φ−1(t)

)

Φ(t) + Φ−1(t)

(

d

dt
Φ(t)

)

=

(

d

dt
Φ−1(t)

)

Φ(t) + Φ−1(t)A(t)Φ(t) ⇒
d

dt
Φ−1(t) = −Φ−1(t)A(t).

Therefore the rows of Φ−1(t) are solutions of ẇ = −wA(t), and of course they are linearly
independent. �

Corollary 1.3. For n = 2, let

Φ(t) =

(

a(t) b(t)
c(t) d(t)

)

be a fundamental matrix solution of ẋ = A(t)x. Then a fundamental matrix solution of
ẇ = −wA(t) is

Φ−1(t) =
1

a(t)d(t)− b(t)c(t)

(

d(t) −b(t)
−c(t) a(t)

)

.
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The point of the Corollary is that for n = 2, if you know just one solution of ẋ = A(t)x,
i.e., one column of Φ(t), and you know detΦ(t) (which can be calculated using Liouville’s
formula), then you know one row of Φ−1(t), i.e., one solution of ẇ = −wA(t).

Recall that the state transition matrix of ẋ = A(t)x is Φ(t, s), with the property that for
any solution, x(t) = Φ(t, s)x(s). Similarly, the state transition matrix of ẇ = −wA(t) is
Ψ(t, s), with the property that for any solution, w(t)Ψ(t, s) = w(s).

Proposition 1.4. Ψ(t, s) = Φ(t, s).

Proof. Fix t. Ψ(t, t)Φ(t, t) = I · I = I. Also

∂

∂s
(Ψ(t, s)Φ(s, t)) =

(

∂

∂s
Ψ(t, s)

)

Φ(s, t) + Ψ(t, s)

(

∂

∂s
Φ(s, t)

)

= −Ψ(t, s)A(s)Φ(s, t) + Ψ(t, s)A(s)Φ(s, t) = 0.

Therefore, as a function of s with t fixed, Ψ(t, s)Φ(s, t) ≡ I, so Ψ(t, s) = Φ−1(s, t) =
Φ(t, s). �

2. Melnikov integral

Consider a differential equation ẋ = f(x, µ), x ∈ R
2, µ ∈ R, with two hyperbolic saddles

p−(µ) and p+(µ). We assume that for µ = 0 there is a solution x∗(t) with limt→−∞ x∗(t) =
p−(0) and limt→∞ x∗(t) = p+(0). We are interested in whether this connection between
equilibria breaks as the parameter µ changes.

Let x∗(0) = x0. The velocity vector of x∗(t) at t = 0 is

ẋ∗(0) = f(x0, 0) = (f1(x0, 0), f2(x0, 0)) .

Let

u0 =
1

‖f(x0, 0)‖2
(−f2(x0, 0), f1(x0, 0)) ,

which is orthogonal to f(x0, 0). Consider a line segment Σ through x0 in the direction u0; Σ
is given as x = x0(ξ) = x0 + ξu0, |ξ| < α. (Vectors in this paragraph are column vectors.)

Let x−(t, µ) be a family of solutions of ẋ = f(x, µ) with

(1) x−(0, µ) ∈ Σ,
(2) limt→−∞ x−(t, µ) = p−(µ), and
(3) x−(t, 0) = x∗(t).

These solutions lie in the unstable manifold of p−(µ).
Similarly, let x+(t, µ) be a family of solutions of ẋ = f(x, µ) with

(1) x+(0, µ) ∈ Σ,
(2) limt→∞ x+(t, µ) = p+(µ), and
(3) x+(t, 0) = x∗(t).
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These solutions lie in the stable manifold of p+(µ).
We have

x−(0, µ) = x0 + ξ−(µ)u0, x+(0, µ) = x0 + ξ+(µ)u0, ξ−(0) = ξ+(0) = 0.

We define the separation function

S(µ) = ξ−(µ)− ξ+(µ).

If S(µ) = 0, then there is a solution of ẋ = f(x, µ) that goes from p−(µ) to p+(µ). In
other words, the unstable manifold of p−(µ) meets the stable manifold of p+(µ). We have
S(0) = 0, and we want to calculate S ′(0) = ξ′

−
(0)− ξ′+(0).

Let ψ0 =
(

−f2(x0) f1(x0)
)

(a row vector). Then

dξ±

dµ
(0) = ψ0

dξ±

dµ
(0)u0 = ψ0

∂x±

∂µ
(0, 0).

We calculate:

∂2x−

∂t∂µ
(t, µ) =

∂2x−

∂µ∂t
(t, µ) =

∂

∂µ
f(x−(t, µ), µ) = Dxf(x−(t, µ), µ)

∂x−

∂µ
(t, µ) +

∂f

∂µ
(x−(t, µ), µ).

Setting µ = 0 we find that ∂x
−

∂µ
(t, 0) satisfies the inhomogeneous linear differential equation

(1) v̇ = Dxf(x∗(t), 0)v +
∂f

∂µ
(x∗(t), 0).

Let the state transition matrix of the homogeneous linear differential equation v̇ = Dxf(x∗(t), 0)v
be Φ(t, s). By the variation of parameters formula, the solution of (1) with v(−T ) given is

v(t) = Φ(t,−T )v(−T ) +

∫ t

−T

Φ(t, s)
∂f

∂µ
(x∗(s), 0)ds.

Let ψ(t) denote the solution of the adjoint equation ẇ = −wDxf(x∗(t), 0) with initial con-
dition ψ(0) = ψ0. Then

(2)
dξ−

dµ
(0) = ψ(0)

∂x−

∂µ
(0, 0) = ψ(0)

(

Φ(0,−T )
∂x−

∂µ
(−T, 0) +

∫

0

−T

Φ(0, s)
∂f

∂µ
(x∗(s), 0)ds

)

= ψ(−T )
∂x−

∂µ
(−T, 0) +

∫

0

−T

ψ(s)
∂f

∂µ
(x∗(s), 0)ds.

Proposition 2.1. ψ(t) = exp
(

−
∫ t

0
divf(x∗(s), 0)ds

)

(

−ẋ∗2(t) ẋ∗1(t)
)

.

Proof. One solution of the linear differential equation v̇ = Dxf(x∗(t), 0)v is ẋ∗(t) = (ẋ∗1, ẋ∗2).
Suppose

(

ẋ∗(t) v(t)
)

is a fundamental matrix solution of v̇ = Dxf(x∗(t), 0)v with determi-
nant 1 at t = 0. By Liouville’s Formula, the determinant at time t is

exp

(
∫ t

0

trDxf(x∗(s), 0)ds

)

= exp

(
∫ t

0

divf(x∗(s), 0)ds

)

.

The proposition then follows from Corollary 1.3. �
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Corollary 2.2. ψ(t) → 0 exponentially as t→ ±∞.

From the corollary, in (2),

lim
T→∞

ψ(−T )
∂x−

∂µ
(−T, 0) = 0 ·

∂p−

∂µ
(0) = 0.

Therefore
dξ−

dµ
(0) =

∫

0

−∞

ψ(s)
∂f

∂µ
(x∗(s), 0)ds.

Similarly,
dξ+

dµ
(0) =

∫

0

∞

ψ(s)
∂f

∂µ
(x∗(s), 0)ds.

Therefore

S ′(0) = ξ′
−
(0)− ξ′+(0) =

∫

∞

−∞

ψ(s)
∂f

∂µ
(x∗(s), 0)ds.

The integral is called a Melnikov integral.


