ADJOINT EQUATION AND MELNIKOV FUNCTION

STEVE SCHECTER

1. ADJOINT EQUATION

Consider the linear differential equation & = A(t)x (x = n x 1 column vector, A =n xn
matrix). The adjoint equation is j = —A(t)Ty (y = n x 1 column vector) or equivalently
w = —wA(t) (w=1xn row vector). I'll use the second form.

Proposition 1.1. If z(t) is a solution of & = A(t)x and w(t) is a solution of w = —wA(t),
the w(t)x(t) (row vector times column vector) is constant.

Proof.
%w(t)x(t) = wr + wi = —wAr + wAzr = 0.
U
Proposition 1.2. If ®(t) is a fundamental matriz solution of © = A(t)z, then ®~1(t) is a
fundamental matriz solution of w = —wA(t). (It’s rows are linearly independent solutions.)
Proof.
0= C1= 9 (@ wa) - (%@—1@) D(t) + @7 (1) (%@(t))
= (%cb—l(t)) O(t) + ¢ 1AM P(L) = %(I)‘l(t) = —d (1) A(t).
Therefore the rows of ®~1(t) are solutions of 1 = —wA(t), and of course they are linearly
independent. O

Corollary 1.3. Forn =2, let

i

be a fundamental matriz solution of © = A(t)x. Then a fundamental matriz solution of

w = —wA(t) is
o 1 dit)  —b(t)
20 = S s < ) ‘

)
)

C

B(t) = (a(f
)
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The point of the Corollary is that for n = 2, if you know just one solution of & = A(t)x,
i.e., one column of ®(¢), and you know det ®(¢) (which can be calculated using Liouville’s

formula), then you know one row of ®~!(#), i.e., one solution of w = —wA(t).
Recall that the state transition matrix of & = A(t)z is ®(t, s), with the property that for
any solution, z(t) = ®(t,s)x(s). Similarly, the state transition matrix of w = —wA(t) is

U(t, s), with the property that for any solution, w(t)¥(¢,s) = w(s).
Proposition 1.4. U(t,s) = ®(t, s).
Proof. Fix t. U(t,t)®(t,t)=1-1=1. Also

% (U(t,s)P(s,t)) = <%\D(t, s)) O(s,t) + V(t,s) <%(I>(s,t))
= —U(t,5)A(s)P(s,t) + U(t, s)A(s)P(s,t) = 0.

Therefore, as a function of s with ¢ fixed, U(t,s)®(s,t) = I, so U(t,s) = & (s,t) =
O(t, s). O

2. MELNIKOV INTEGRAL

Consider a differential equation & = f(z, ), x € R?, u € R, with two hyperbolic saddles
p—(p) and py(p). We assume that for g = 0 there is a solution x,(t) with lim,, ., x.(t) =
p—(0) and lim; o z.(t) = p4+(0). We are interested in whether this connection between
equilibria breaks as the parameter p changes.

Let x.(0) = x9. The velocity vector of x,(t) at t =0 is

7.(0) = f(20,0) = (f1(0,0), fa(x0,0)) .

Let

1
up = TEOIE (= f2(20,0), f1(20,0)),

which is orthogonal to f(zg,0). Consider a line segment > through xy in the direction wug; 2
is given as © = xo(§) = xo + Eug, |£| < a. (Vectors in this paragraph are column vectors.)
Let x_(t, ;) be a family of solutions of & = f(x, u) with

(1) z-(0,p) € X,
(2) limyy ooz (t, 1) = p—(1), and
(3) z_(t,0) = z.(1).
These solutions lie in the unstable manifold of p_(p).
Similarly, let x, (¢, ) be a family of solutions of & = f(x, u) with

(1) x-l—(O’lu’) < 27
(2) limyseo 24 (¢, 1) = p1(pt), and
(3) z4(t,0) = . ().
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These solutions lie in the stable manifold of p, (u).
We have

(0, 1) = o + & (wuo,  4+(0, 1) = xo + & (g,  €-(0) = &4(0) = 0.
We define the separation function

S(p) = & (1) = &(w)-
If S(u) = 0, then there is a solution of & = f(x,u) that goes from p_(u) to py(p). In
other words, the unstable manifold of p_(u) meets the stable manifold of py(u). We have
S(0) =0, and we want to calculate S’(0) = £ (0) — &.(0).
Let tg = (—fa(z0) fi(wo)) (a row vector). Then

“E0) = O = tn = (0.0).

We calculate:

Oa_ 0x_ 0 oz P
%(t,u) = Wi)’t(t’“) = %f(x_(t,u),u) = Dmf(x_(t,ﬂ),ﬂ);_u(t’ﬂ) i %(I—(t,u),u).

Setting p = 0 we find that am—*(iﬁ, 0) satisfies the inhomogeneous linear differential equation
o

0 b= Dy f(aa(t),0)0 + §—£<z*<t>,o>.

Let the state transition matrix of the homogeneous linear differential equation © = D, f(x.(t),0)v
be ®(t,s). By the variation of parameters formula, the solution of (1) with v(—7") given is
t
0
v(t) = O(t, =T)v(-T) +/ (¢, s)—f(x*(s),())ds.
-T 8u

Let #(t) denote the solution of the adjoint equation w = —wD, f(z.(t),0) with initial con-
dition ¢(0) = 9. Then

& Ox_ ox of

@ 0= 60 %= 0.0 = v(0) (@(0 -nS=-r0+ [ 80 s)auu*(s) o>ds)

o210+ [ 06D w6005

Proposition 2.1. ¢(t) = exp (— f(f divf(a:*(s),O)ds> (—dsa(t) da(t)).

Proof. One solution of the linear differential equation v = D, f(x.(t),0)v is T, (t) = (Z41, T42)-
Suppose (i.(t) v(t)) is a fundamental matrix solution of ¥ = D, f(z.(t),0)v with determi-
nant 1 at ¢t = 0. By Liouville’s Formula, the determinant at time ¢ is

exp ( / D, (s), )ds) ~exp ( /0 t divf(:c*(s),o)ds).

The proposition then follows from Corollary 1.3. 0
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Corollary 2.2. ¥(t) — 0 ezponentially as t — +00.

From the corollary, in (2),

Jim w(- >8§‘<—T,o>=o-%<o>=o.
Therefore
0= [ v .0
Similarly,
d€+ / (s ,0)ds.
Therefore

/ of
5'(0) = €.(0) ~ £,(0) = / V()G (3),0)ds
The integral is called a Melnikov integral.



