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enabled us to “get our foot in the door” by using powerful phase plane
techniques.

Remark 2. From the double-zero eigenvalue and now this case, a lesson
to be learned is that Poincaré-Andronov-Hopf bifurcations always cause
us trouble in the sense of how they relate to global bifurcations and/or
how they are affected by the consideration of the higher order terms of the
normal form.

(b) .
3.2 Bifurcations of Fixed Points of Maps
} wupa) '

s The theory for bifurcations of fixed points of maps is very similar to the
P Wuip,) E theory for vector fields. Therefore, we will not include as much detail but

t merely highlight the differences when they occur.

Ws(p,) Welpy) Consider a p-parameter family of maps of R™ into R™
L y— g(y, A), yeR", XeRP (3.2.1)
o Weips) where g is C” (with r to be specified later, usually r > 5 is sufficient) on
! S Woon) some sufficiently large open set in R™ x IRP. Suppose (3.2.1) has a fixed
! point at (¥, A) = (30, Xo), i.e.,
(o) (d)

9(¥0, Xo) = yo. (32.2)

Then, just as in the case for vector fields, two questions naturally arise.

FIGURE 3.1.43.

in Chapter 4 that chaotic dynamics may result. 1. Is the fixed point stable or unstable?

Step 5: Analysis of Global Bifurcations. As we have mentioned, this will be
completed in Section 4.9 after we have developed the necessary theoretical
tools.

2. How is the stability or instability affected as \ is varied?

As in the case for vector fields, an examination of the associated linearized
map is the first place to start in-order to answer these questions. The
associated linearized map is given by

€ Dyg(yo, Xo)¢, €€ R”, (3.2.3)

-and, from Sections 1.1A and 1.1C, we know that if the fixed point is hy-
perbolic (i.e., none of the eigenvalues of D,g(yg, Ao) have unit modulus),
then stability (resp. instability) in the linear approximation implies stabil-
y (resp. instability) of the fixed point of the nonlinear map. Moreover,
using an implicit function theorem argument exactly like that given at the
beginning of Section 3.1, it can be shown that, in a sufficiently small neigh-
borhood of (yo. Ao), for each A there is a unique fixed point having the
same stability tyPe as (yo, o). Thus, hyperbolic fixed points are locally
dynamically dull! :
" The fun begins when we consider Questions 1 and 2 above in the situation
when the fixed point is not hyperbolic. Just as in the case for vector fields,

Step 6: Effects of the Higher Order Terms in the Normal Form. In CasesI
and IVa,b the method of averaging essentially enables us to conclude that
the higher order terms do not qualitatively change the dynamics. Thus we
have found a versal deformation. The details of proving this, however, are
left to the exercises.

The remaining cases are more difficult and, ultimately, we will argue that
versal deformations may not exist in some circumstances.
Before leaving this section we want to make some final remarks.

Remark 1. This analysis reemphasizes the power of the method of nor-
mal forms. As we will see throughout the remainder of this book, vector
fields having phase spaces of dimension three or more can exhibit very .
complicated dynamics. In our case the method of normal forms utilized
the structure of the vector field to naturally “separate” the variables. This
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the linear approximation cannot be used to determine stability, and varying . X
A can result in the creation of new orbits (i.e., bifurcation). The simplest
ways in which a fixed point of a map can be nonhyperbolic are the following.
1. Dyg(yo, Ao) has a single eigenvalue equal to 1 with the remaining n—-1
eigenvalues having moduli not equal to 1. "

2. Dyg(yo, Ao) has a single eigenvalue equal to -1 with the remaining
n — 1 eigenvalues having moduli not equal to 1.

3. Dyg(yo, Ao) has two complex conjugate eigenvalues having modulus 1
(which are not one of the first four roots of unity) with the remaining
n — 2 eigenvalues having moduli not equal to 1.

Using the center manifold theory, the analysis of the above situations can
be reduced to the analysis of a p-parameter family of one-, one-, and two-
dimensional maps, respectively. We begin with the first case.

3.2A AN EIGENVALUE OF 1

In this case, the study of the orbit structure near the fixed point can bere- '
duced to the study of a parametrized family of maps on the one-dimensional
center manifold. We suppose that the map on the center manifold is given :
by

(b)

1 1 :
z f(z,p), =zeR', peR', (324) ; FIGURE 3.2.1. a) f(z,4) = + p1 — 2% b) f(z,p) = 2 + pu + 2°.
where, for now, we will consider only one parameter (if there is more than *
one parameter in the problem, we will consider all but one as fixed con-
stants). In making the reduction to the center manifold, the fixed point
(0, A0) € R™ x R? has been transformed to the origin in R! x R! (cf

Section 2.1A) so that we have

- Weare interested in the nature of the fixed points for (3.2.7) near (z, w) =
‘-0 0). Since (3.2.7) is so simple, we can solve for the fixed points directly
;,w as follows ,

flz,u) —z=pFz?=0. (3.2.10)

e show the two curves of fixed points in Figure 3.2.1 and leave it as an
“exercise for the reader to verify the stability types of the different branches
f fixed points shown in this figure. We refer to the bifurcation occuring at
#(z, p) = (0,0) as a saddle-node bifurcation.

. In analogy with the situation for vector fields (see Section 3.1A) we want
%to find general conditions (in terms of derivatives evaluated at the bifur-
Seation point) under which a map will undergo a saddle-node bifurcation,

e,

£(0.,0) =0, (3295

af 5,00 =1 (3.26)

i) THE SADDLE-NODE BIFURCATION

Consider the map
z v f(z,p) =z +pF rcR!, peR. (342.7);

It is easy to verify that (z,u) = (0,0) is a nonhyperbolic fixed point of

the map possesses a unique curve of fixed points in the z — 1
(3.2.7) with eigenvalue 1, i.e., k plane

passing through the bifurcation point which locally lies on one side
of pu=0.

£(0.0) =0, (3.28): '

‘We proceed using the implicit function theorem exactly as in the case for

7]
a_i (0,0) = 1. (3.2.9) ?vector fields.

- '&
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Consider a general one-parameter family of one-dimensional maps

(3.2.11) 1

zo fz,p), zeR', peR’,
wieh £(0,0) =0, (3.2.12)
of
2 =1 (3.213)
9z (0,0) 1

The fixed points of (3.2.11) are given by
f(z,p) —z = h(z,p) = 0.

We seek conditions under which (3.2.14) defines a curve in‘the  — p plane 5
with the properties described above. By the implicit function theorem,
oh

of
5&(0,0) = a—“(O»O)?éO

(3:214) 7

5
&

(3.2.15) 4
implies that a single curve of fixed points passes throngl? (z, 1) = (0,0);
moreover, for z sufficiently small, this curve of fixed pc_nnts can'be rep;
resented as a graph over the z variables, i.e., there exists a unique C

function, p(x), = sufficiently small, such that

h(z, p(z)) = f(z, p(z)) -z =0. (3.2.16) W
Now we simply require that ..
& 0y = 32.17) 4
% 0) =0, s}
@p 3.2.18) 4
L0 #0. (3218)

3
As was the case for vector fields (Section 3.1A), we thain A(3.2.17.) and
3.2.18) in terms of derivatives of the map at the bifurcation point l?y
implicitly differentiating (3.2.16). Following (3.1.40) and (3.1.43), we obtain

_8h(0,0) _(%5(0,0) 1)

dp oy - “oz0:0) =0, (3.2.19)
2z 2 (0,0) L(0,0) ‘
82 it

L) = 5200 _ _g—’”{'(o’o). (3220

da? 22(0,0) 92(0,0) :

To summarize, a general one-parameter family of C™ (r > 2) one~dimen:

sional maps .
z — f(z.p), ceR', peR
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X
18
(a)
X
u
(b)
FIGURE 3.2.2. a) (- Z4(o, 0)/4£(0,0)) >0, b) (-2 (0.0)/2£(0,0)) < 0.

undergoes a saddle-node bifurcation at (z,u) = (0,0) if

‘g:o(’oo)o) i (1)} nonhyperbolic fixed point (3.2.21)
O\ -
- with P
; é(o’ 0) £0, (3.2.22)
62
6_;2((0’ 0) # 0. (3.2.23)

Moreover, the sign of (3.2.20) tells us on which side of 1 = 0 the curve of

xed points is located; we show the two cases in Figure 3.2.2 and leave it

© as an exercise for the reader to compute the possible stability types of the

ranches of fixed points shown in the figure (see Exercise 3.5). Thus, (3.2.7 )

an be viewed as a normal form for the saddle-node bifurcation of maps.

otice that, with the exception of the condition %ﬁ (0,0) = 1, the conditions

or a one-parameter family of one-dimensional maps to undergo a saddle-

ode bifurcation in terms of derivatives of the map at the bifurcation point

are exactly the same as those for vector fields (cf. (3.1.46), (3.1.47) and
3.1.48)). The reader should consider the implications of this.
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FIGURE 3.2.9.
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in Figure 3.2.9 in the manner discussed at the end of Section 3.2A.i).

2 -
E 328 AN EIGENVALUE OF -1
Suppose that our one-parameter family of C" (r > 3) one-dimensional
E: maps has a nonhyperbolic fixed point, and the eigenvalue associated with
(b) E ¥ the lincarization of the map about the fixed point is -1 rather than 1. Up
o e 3 £ to this point the bifurcations of one-parameter families of one-dimensional
FIGURE 3.2.8. a) (~g_i§(o, 0) /5'5;%(0, 0)) > 0; b) (- 2£(0,0)/ 54 (0, 0)) <0. 4 £ maps have been very much the same as the analogous cases for vector fields.
4 . However, the case of an eigenvalue cqual to -1 is fundamentally different
. 0) if ; k- and does not have an analog with one-dimensional vector field dynamics.
undergoes a pitchfork bifurcation at (z,p) = (0.0) i E: [ We begin by studying a specific example.
g—f((),o) =0, (3.2.75) f,; L i) EXAMPLE
# 3 Consider the following one-parameter family of one-dimensional maps
02 f 76 3
6_9:3(0’ 0) =0. (3276) E z f(z,pu) = —x — pz + 25, zeR'' peRL (3.2.79)
9%f (0.0) #0 (3.2.77 :; ~ It is easy to verify that (3.2.79) has a nonhyperbolic fixed point at (z, u) =
Ozdp " ' E (0,0) with eigenvalue —1. i.e.,
%3*{ (0,0) #0. (3278 : £(0,0)=0, (3.2.80)
T b i a
Moreover, the sign of (3.2.71) tells us on which side of p = 0 that one of th , 6—f(0‘ 0)=-1. (3.2.81)
surves of ’ﬁxed points lies. We illustrate both cases in Figure 3.2.8 and 1@“ E ) z _ )
:tm;b an exercise (see Exercise 3.7) for the reader to compute the possibl The fixed points of (3.2.79) can be calculated directly and are given by

stability types of the different branches shown in Fig}lre 3.2_,8. Thus, w flz.p) -z =z(a® - (24 ) =0. (3.2.82)
can view (3.2.50) as a normal form for the pitchfork bifurcation.

We end our discussion of the pitchfork bifurcation by graphically showing _"~ Thus, (3.2.79) has two curves of fixed points.
the bifurcation for :

Tz +pr— o z=0 (3.2.83)
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FIGURE 3.2.10.

and
2 =24 p,

but only (3.2.83) passes through the bifurcation point (z,p) = (0,0). In ;

Figure 3.2.10 we illustrate the two curves of fixed points and leave it as an
exercise for the reader to verify the stability types for the different curves
of fixed points shown in the figure. In particular we have

unstable for p < -2,
z=0is stable for —2< pu <0, (3.2.85)
unstable for p > 0,
and ble fi 2
2. . unstable for p > -2,
T =2+pls {does not exist for p < —2. (3:2.86)

From (3.2.85) and (3.2.86) we can immediately see there is a problem. 3

namely, that for g4 > 0, the map has exactly three fixed points and all are
unstable. (Note: this situation could not occur for one-dimensional vector

fields) A way out of this difficulty would be provided if stable periodic 3
orbits bifurcated from (x. ) = (0.0). We will see that this is indeed the

case.
Consider the second iterate of (3.2.79), i.c.

z— f2(x,p) = x4+ p(2 + p)x — 22° + O(4).

It is easy to verify that (3.2.87) has a nonhyperbolic fixed point at (z,p) =
(0,0) having an eigenvalue of 1, i.e.,

£2(0,0) =0,
af?

(3.2.89)

(3289) 3

(0,0) = 1.

(3.2.84)

(3.2.87) 3

3.2. Bifurcations of Fixed Points of Maps 373
Moreover,
af?
a—“([),, 0) =0, (3.2.90)
6‘.’f2
5205 (0,0) = 2, (3.2.91)
82f2
B (0,0) =0, (3.2.92)
33]2
ﬁ(oi 0) = -12. (3.2.93)

. Hence. from (3.2.75), (3.2.76), (3.2.77). and (3.2.78), (3.2.90). (3.2.91).

(3.2:92), and (3.2.93) imply that the second iterate of (3.2.79) undergocs
a pitchfork bifurcation at (z.p) = (0.0). Since the new fixed points of

" f*z.p) are not fixed points of f(z.u). they must be period two points of

f(z, 1) Hence, f(x, p) is said to have undergone a period-doubling bifurca-
tion at (z., u) = (0,0).

ii) THE PERIOD-DOUBLING BIFURCATION

Consider a one-parameter family of C” (r > 3) one-dimensional maps

xz— f(z.p), rzeR'. peR (3.2.94)
We seek conditions for (3.2.94) to undergo a period-doubling bifureation.
The previous example will be our guide. It should be clear from the example

that conditions sufficient for (3.2.94) to undergo a period-doubling bifur-

; cation are for the map to have a nonhyperbolic fixed point with eigenvalue
-1 and for the second iterate of the map to undergo a pitchfork bifurca-

tion at the same nonhyperbolic fixed point. To summarize, using (3.2.73),

- (32.74), (3.2.75), (3.2.76), (3.2.77). and (3.2.78), it is sufficient for (3.2.94)

tosatisly £(0.0) =0, (3.2.95)
% 0.0)= 1, (3.2.96)
Y 0o=o (3.297)
%%}2(0, 0) = 0. (3.2.98)
gjg;(o 0) # 0, (3.2.99)
%];(0, 0) #0. (3.2.100)

k.
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FIGURE 3.2.11. ) (~24(0.0)/2£2(0.0) > 0: b) (-54(0.0)/££0.0) 2

< 0.

Moreover, the sign of (— Q%fé?’—ol / 6—25‘%21402) tells us on which side of 3
u = 0 the period two points lie. We show both cases in Figure 3.2.11 and .;;
leave it as an exercise for the reader to compute the possible stability types

for the different curves of fixed points shown in the figure; see Exercise 3.8.
Finally, we demonstrate graphically the period-doubling bifurcation for

z— —z—px+ 20 = f(z.p)

and the associated pitchfork bifurcation for f2(x, 1) in the graphical man- k

ner discribed at the end of Section 3.2A, i) in Figure 3.2.12.

3.2c
NAIMARK-SACKER BIFURCATION

This section describes the map analog of the Poincaré-Andronov-Hopf bi-

furcation for vector fields but with some very different twists. Although this 3

bifurcation often goes by the name of “Hopf bifurcation for maps,” this is 8
misleading because the bifurcation theorem was first proved independently

by Naimark [1959] and Sacker {1965]. Consequently. we will use the term 3

23

2

23
i

.

A PAIR OF EIGENVALUES OF MODULUS 1: THE
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FIGURE 3.2.12.

%, “Naimark-Sacker bifurcation.”

z — f(z,p),

z € R?,

——
2(x:)

peR,

375

y=x

‘_ We know that in this situation the study of the dynamics of (3.2.1) near
the fixed point (yg, Ag) € R"™ x RP can be reduced to the study of (3.2.1)
restricted to a p-paramcter family of two-dimensional center manil'olds' Wo

- assume that the reduced map has been calculated and is given by o

(3.2.101)

£ where we take p = 1. If there is more than one parameter, we consider all
: but one as fixed and denote it as p. In restricting the map to the center
3 manifold. some preliminary transformations have been made so that the
£ fixed point of (3.2.101) is given by (x, ) = (0, 0), i.e., we have

£(0.0) = 0, (3.2.102)
with the matrix
3 D-£(0,0) (3.2.103)
4 baving two complex conjugate eigenvalues, denoted A(0). X(0), with
IAO)] = 1. (3.2.104)
'We will also require that
3 A0)£1, n=1234 (3.2.105)

', {Note: if A(0) satisfies (3.2.105), then so does X0), and vice versa.)




