
TWO THEOREMS ABOUT LINEAR OPERATORS

S. SCHECTER

Theorem 1. If X is a normed vector space and Y is a Banach space, then L(X, Y ) is a

Banach space.

Recall that L(X, Y ) is the vector space of bounded linear maps from X to Y , with the
norm

‖A‖ = sup
x : |x|=1

|Ax|.

Proof. Let An be a Cauchy sequence in L(x, y). “Define” a function A : X → Y as follows:
for each x ∈ X , Ax = limn→∞Anx. This makes sense provided limn→∞Anx exists. Since
Anx is a sequence in the Banach space Y , the limit exists provided the sequence is Cauchy.
There is no problem when x = 0 since Anx = 0 for every n. So let x ∈ X with x 6= 0. Let
ǫ > 0. Choose N such that for n, m ≥ N , ‖An − Am‖ < ǫ

|x|
. We can do this because the

sequence An is Cauchy. Then for n, m ≥ N ,

|(An − Am)x| ≤ ‖An − Am‖|x| <
ǫ

|x|
|x| = ǫ.

Therefore the sequence Anx is Cauchy, so we have defined Ax.
We must show:

(1) A is linear.
(2) A is bounded.
(3) An → A, i.e., ‖An −A‖ → 0.

(1) A is linear:

A(x1 + x2) = lim
n→∞

An(x1 + x2) = lim
n→∞

(Anx1 +Anx2) = lim
n→∞

Anx1 + lim
n→∞

Anx2 = Ax1 +Ax2.

The argument that A(ax) = aAx is similar.
(2) A is bounded:
The sequence An is Cauchy, so it is bounded, in the sense that there is a number C > 0

such that ‖An‖ ≤ C for all n. (This is a general fact about Cauchy sequences in a normed
vector space.) Therefore, for any n and any x ∈ X , |Anx| ≤ C|x|. Hence, for any fixed
x ∈ X ,

|Ax| = lim
n→∞

|Anx| ≤ C|x|.

(This uses the general fact that in a normed vector space, if yn → y and |yn| ≤ c for all n,
then |y| ≤ c.) Therefore A is bounded.

(3) ‖An −A‖ → 0:
Let ǫ > 0. Since the sequence An is Cauchy, there is a number N such that for n, m ≥ N ,

‖An − Am‖ < ǫ

2
. Let n ≥ N . We claim that ‖An − A‖ ≤ ǫ, which proves the result. To see
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this, let x ∈ X with |x| = 1. We just need to show that that |(An−A)x| ≤ ǫ. Choose m ≥ N

such that |Amx−Ax| < ǫ

2
. (We can do this because of the way we defined Ax above.) Then

|(An −A)x| = |Anx− Ax| ≤ |Anx− Amx|+ |Amx−Ax| = |(An −Am)x|+ |Amx− Ax|

≤ ‖An − Am‖|x|+ |Amx− Ax| = ‖An − Am‖+ |Amx−Ax| <
ǫ

2
+

ǫ

2
= ǫ.

�

Theorem 2. Let X be a normed vector space, let Z be a subspace of X, let Y be a Banach

space, let A : Z → Y be a bounded linear map, and let Z̄ denote the closure of Z in X. Then

there is a unique bounded linear map B : Z̄ → Y such that B|Z = A. Moreover, ‖B‖ = ‖A‖.

Proof. If x ∈ Z, define Bx to be Ax (of course). If x ∈ Z̄ \ Z, then there is a sequence xn

in Z such that xn → x. We claim that Axn is a Cauchy sequence in Y . To see this, let
ǫ > 0. Since xn converges, it is Cauchy, so there is a number N such that for n, m ≥ N ,
|xn − xm| <

ǫ

‖A‖
. Then for n, m ≥ N ,

|Axn −Axm| = |A(xn − xm)| ≤ ‖A‖|xn − xm| < ‖A‖
ǫ

‖A‖
= ǫ.

Since Axn is a Cauchy sequence in Y , it converges to some y ∈ Y . “Define” Bx = y.
We must show:

(1) B is well-defined, i.e., the definition of Bx is independent of which sequence xn → x

we use to define it.
(2) B is linear.
(3) ‖B‖ = ‖A‖.
(4) Items (1)-(3) imply that B is a bounded linear extension of A to Z̄. For the unique-

ness, we should also explain why there is no other bounded linear extension of A to
Z̄.

(1) Let x′
n
be another sequence in Z that approaches x ∈ Z̄ \ Z. By the argument above

there exists y′ ∈ Y such that Ax′
n → y′. We must show that y = y′.

For any n,

|y − y′| ≤ |y − Axn|+ |Axn − Ax′
n
|+ |Ax′

n
− y′| ≤ |y − Axn|+ ‖A‖|xn − x′

n
|+ |Ax′

n
− y′|.

Each of the three summands on the right approaches 0 as n → ∞, so |y− y′| = 0, so y = y′.
(2) Let x, x′ ∈ Z̄. Choose sequences xn and x′

n
in Z such that xn → x and x′

n
→ x′. Then

xn + x′
n
→ x+ x′, so

B(x+ x′) = limA(xn + x′
n) = lim(Axn + Ax′

n) = limAxn + limAx′
n = Bx+Bx′.

The proof that B(ax) = aBx is similar.
(3) For x ∈ Z we have |Bx| = |Ax| ≤ ‖A‖|x|. For x ∈ Z̄ \ Z, let xn be a sequence in Z

such that xn → x. Then

|Bx| = | limAxn| = lim |Axn| ≤ lim ‖A‖|xn| ≤ ‖A‖ lim |xn| = ‖A‖|x|.

It follows that ‖B‖ ≤ ‖A‖. But just considering x ∈ Z shows that ‖B‖ ≥ ‖A‖. Therefore
‖B‖ = ‖A‖.

(4) If B′ is any bounded extension of A to Z̄, then B′ is continuous. Let x ∈ Z̄ \ Z,and
let xn be a sequence in Z such that xn → x. Then

B′x = limB′xn = limAxn = Bx.
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Therefore B′ = B.
�


