TWO THEOREMS ABOUT LINEAR OPERATORS

S. SCHECTER

Theorem 1. If X is a normed vector space and Y is a Banach space, then L(X,Y) is a Banach space.

Recall that L(X, Y) is the vector space of bounded linear maps from X to Y, with the norm

$$||A|| = \sup_{x:|x|=1} |Ax|.$$

Proof. Let A_n be a Cauchy sequence in L(x, y). "Define" a function $A: X \to Y$ as follows: for each $x \in X$, $Ax = \lim_{n \to \infty} A_n x$. This makes sense provided $\lim_{n \to \infty} A_n x$ exists. Since $A_n x$ is a sequence in the Banach space Y, the limit exists provided the sequence is Cauchy. There is no problem when x = 0 since $A_n x = 0$ for every n. So let $x \in X$ with $x \neq 0$. Let $\epsilon > 0$. Choose N such that for $n, m \geq N$, $||A_n - A_m|| < \frac{\epsilon}{|x|}$. We can do this because the sequence A_n is Cauchy. Then for $n, m \geq N$,

$$|(A_n - A_m)x| \le ||A_n - A_m|||x| < \frac{\epsilon}{|x|}|x| = \epsilon.$$

Therefore the sequence $A_n x$ is Cauchy, so we have defined Ax.

We must show:

- (1) A is linear.
- (2) A is bounded.
- (3) $A_n \to A$, i.e., $||A_n A|| \to 0$.
- (1) A is linear:

 $A(x_1 + x_2) = \lim_{n \to \infty} A_n(x_1 + x_2) = \lim_{n \to \infty} (A_n x_1 + A_n x_2) = \lim_{n \to \infty} A_n x_1 + \lim_{n \to \infty} A_n x_2 = A x_1 + A x_2.$

The argument that A(ax) = aAx is similar.

(2) A is bounded:

The sequence A_n is Cauchy, so it is bounded, in the sense that there is a number C > 0such that $||A_n|| \le C$ for all n. (This is a general fact about Cauchy sequences in a normed vector space.) Therefore, for any n and any $x \in X$, $|A_n x| \le C|x|$. Hence, for any fixed $x \in X$,

$$|Ax| = \lim_{n \to \infty} |A_n x| \le C|x|.$$

(This uses the general fact that in a normed vector space, if $y_n \to y$ and $|y_n| \leq c$ for all n, then $|y| \leq c$.) Therefore A is bounded.

(3) $||A_n - A|| \to 0$:

Let $\epsilon > 0$. Since the sequence A_n is Cauchy, there is a number N such that for $n, m \ge N$, $||A_n - A_m|| < \frac{\epsilon}{2}$. Let $n \ge N$. We claim that $||A_n - A_m|| \le \epsilon$, which proves the result. To see

Date: January 8, 2013.

this, let $x \in X$ with |x| = 1. We just need to show that that $|(A_n - A)x| \le \epsilon$. Choose $m \ge N$ such that $|A_m x - Ax| < \frac{\epsilon}{2}$. (We can do this because of the way we defined Ax above.) Then

$$|(A_n - A)x| = |A_nx - Ax| \le |A_nx - A_mx| + |A_mx - Ax| = |(A_n - A_m)x| + |A_mx - Ax| \le ||A_n - A_m|| |x| + |A_mx - Ax| = ||A_n - A_m|| + |A_mx - Ax| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Theorem 2. Let X be a normed vector space, let Z be a subspace of X, let Y be a Banach space, let $A : Z \to Y$ be a bounded linear map, and let \overline{Z} denote the closure of Z in X. Then there is a unique bounded linear map $B : \overline{Z} \to Y$ such that B|Z = A. Moreover, ||B|| = ||A||.

Proof. If $x \in Z$, define Bx to be Ax (of course). If $x \in \overline{Z} \setminus Z$, then there is a sequence x_n in Z such that $x_n \to x$. We claim that Ax_n is a Cauchy sequence in Y. To see this, let $\epsilon > 0$. Since x_n converges, it is Cauchy, so there is a number N such that for $n, m \ge N$, $|x_n - x_m| < \frac{\epsilon}{\|A\|}$. Then for $n, m \ge N$,

$$|Ax_n - Ax_m| = |A(x_n - x_m)| \le ||A|| ||x_n - x_m| < ||A|| \frac{\epsilon}{||A||} = \epsilon.$$

Since Ax_n is a Cauchy sequence in Y, it converges to some $y \in Y$. "Define" Bx = y. We must show:

- (1) B is well-defined, i.e., the definition of Bx is independent of which sequence $x_n \to x$ we use to define it.
- (2) B is linear.
- (3) ||B|| = ||A||.
- (4) Items (1)-(3) imply that B is a bounded linear extension of A to \overline{Z} . For the uniqueness, we should also explain why there is no other bounded linear extension of A to \overline{Z} .

(1) Let x'_n be another sequence in Z that approaches $x \in Z \setminus Z$. By the argument above there exists $y' \in Y$ such that $Ax'_n \to y'$. We must show that y = y'.

$$|y - y'| \le |y - Ax_n| + |Ax_n - Ax'_n| + |Ax'_n - y'| \le |y - Ax_n| + ||A|| ||x_n - x'_n| + |Ax'_n - y'|.$$

Each of the three summands on the right approaches 0 as $n \to \infty$, so |y - y'| = 0, so y = y'.

(2) Let $x, x' \in \overline{Z}$. Choose sequences x_n and x'_n in Z such that $x_n \to x$ and $x'_n \to x'$. Then $x_n + x'_n \to x + x'$, so

$$B(x + x') = \lim A(x_n + x'_n) = \lim (Ax_n + Ax'_n) = \lim Ax_n + \lim Ax'_n = Bx + Bx'.$$

The proof that B(ax) = aBx is similar.

(3) For $x \in Z$ we have $|Bx| = |Ax| \leq ||A|| |x|$. For $x \in \overline{Z} \setminus Z$, let x_n be a sequence in Z such that $x_n \to x$. Then

 $|Bx| = |\lim Ax_n| = \lim |Ax_n| \le \lim ||A|| ||x_n| \le ||A|| \lim ||x_n|| = ||A|| ||x||.$

It follows that $||B|| \leq ||A||$. But just considering $x \in Z$ shows that $||B|| \geq ||A||$. Therefore ||B|| = ||A||.

(4) If B' is any bounded extension of A to \overline{Z} , then B' is continuous. Let $x \in \overline{Z} \setminus Z$, and let x_n be a sequence in Z such that $x_n \to x$. Then

$$B'x = \lim B'x_n = \lim Ax_n = Bx_n$$

For any n,

Therefore B' = B.

3