MA 732 Homework 6

S. Schecter

April 14, 2013; corrected April 26, 2013

1. The differential equation

$$
\begin{aligned}
& \dot{x}=-y+x\left(x^{2}+y^{2}-1\right)^{2}, \\
& \dot{y}=x+y\left(x^{2}+y^{2}-1\right)^{2}
\end{aligned}
$$

has a closed orbit, namely the circle $x^{2}+y^{2}=1$. Show that this closed orbit is not hyperbolic. In other words, let $P(x)$ be the Poincaré map on the positive x-axis, so that $P(1)=1$. Show that $P^{\prime}(1)=1$. Suggestion: use polar coordinates. Don't try to compute the Poincaré map and differentiate it. Instead solve the variational equation along the closed orbit.
2. Consider the differential equation

$$
\ddot{x}+\mu\left(x^{2}+\dot{x}^{2}-1\right) \dot{x}+x=0 .
$$

For $\mu=0$, all solutions are periodic. Which periodic solutions persist for small μ ? (Write the differential equation as a system, then use Theorem 3 in the handout "Persistence of periodic solutions in a one-parameter family." For this problem, both $T(\xi, 0)$ and $\psi(t, \xi)$ are independent of ξ.)
3. Suppose the differential equation $\dot{x}=f(x), x \in \mathbb{R}^{n}$, has an equilibrium x_{0}. Let $T>0$. Prove: if $D f\left(x_{0}\right)$ has no eigenvalue of the form $2 m \pi i / T, m$ an integer, then there are no closed orbits of period T near x_{0} other than $x \equiv x_{0}$. Suggestion: Consider the following differential equation on $\mathbb{R}^{n} \times \mathbb{R}$:

$$
\begin{aligned}
\dot{x} & =f(x), \\
\dot{\tau} & =1 .
\end{aligned}
$$

Define a "Poincaré map" P from the "plane" $\tau=0$ to the "plane" $\tau=T$ by following solutions. Then $P\left(x_{0}\right)=x_{0}$. Show that $D P\left(x_{0}\right)$ does not have 1 as an eigenvalue. Then use the Inverse Function Theorem to argue that for the displacement function $d(x)=P(x)-x$, there are no solutions to the equation $d(x)=0$ near x_{0} other than $x=x_{0}$.
4. Consider the periodically forced Van der Pol equation

$$
\ddot{x}+\epsilon\left(x^{2}-1\right) \dot{x}+x=\epsilon \sin \Omega t .
$$

As we did in class, let

$$
\Omega(\epsilon)=\frac{m}{n}-\frac{k}{2 \pi}\left(\frac{m}{n}\right)^{2} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

so that ϵ is the only parameter in our equation. Using the formula we derived in class, compute the first-order (in ϵ) approximation to the Poincaré when $m / n \neq 1$. In other words, use our formula

$$
P^{m}(y, \epsilon)=y+\epsilon \Delta(y, \epsilon)
$$

and our formula for $\Delta(y, 0)$ to compute the map

$$
P_{\text {approx }}^{m}(y, \epsilon)=y+\epsilon \Delta(y, 0) .
$$

I believe you will get

$$
P_{\text {approx }}^{m}\left(\left(y_{1}, y_{2}\right), \epsilon\right)=\binom{y_{1}+\epsilon\left(k m y_{2}+n \pi y_{1}-\frac{n \pi}{4} y_{1}\left(y_{1}^{2}+y_{2}^{2}\right)\right)}{y_{2}+\epsilon\left(-k m y_{1}+n \pi y_{2}-\frac{n \pi}{4} y_{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right)} .
$$

Then convert to polar coordinates (remember, this is a map, not a differential equation) to get

$$
P_{\text {approx }}^{m}((r, \theta), \epsilon)=\binom{r+\epsilon n \pi r\left(1-\frac{r^{2}}{4}\right)}{\theta-\epsilon k m}
$$

Notice that $P_{\text {approx }}^{m}$ has the invariant circle $r=2$ (if you start on it, you stay on it). On this circle, θ changes by $\epsilon m k$ with each iteration. This calculation suggests, but does not prove, that for small $\epsilon, P^{m}(y, \epsilon)$ has an invariant circle near $r=2$. We have not studied how to prove that a map has an invariant circle.

