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1. Consider the system

ẋ = x− y − x2(x+ 3y)− y2(x+ y),

ẏ = x+ y + x2(x− y)− y2(x+ y).

(a) Check that the origin is a repelling focus.

(b) Use polar coordinates to find an annulus that is guaranteed, by the Poincaré-
Bendixson Theorem, to have a closed orbit.

2. Consider the differential equation ẋ = y + x− x3

3
, ẏ = −x.

(a) Draw the nullclines and the vector field on the nullclines. Use this information to
sketch the approximate direction of the vector field in the open regions determined
by the nullclines.

(b) From the above information alone, does it seem possible that there is a closed
orbit that lies between the lines x = −1 and x = 1?

(c) Use Bendixson’s Criterion to show that there is no closed orbit that lies between
the lines x = −1 and x = 1.

(d) Show that our equation has the symmetry R(x, y) = (−x,−y). (Thinking of
our system as ż = f(z), you want to show that f(R(z)) = DR(z)f(z).) This
symmetry implies that if (x(t), y(t)) is a solution of our differential equation, then
(x̃(t), ỹ(t)) = (−x(t),−y(t)) is also a solution. (You could also check this directly.)

(e) Let (x(t), y(t)), 0 ≤ t ≤ T be a solution with (x(0), y(0)) = (0, a), a > 0;
(x(T ), y(T )) = (0,−b), b > 0; and x(t) > 0 for 0 < t < T . Show: if a 6= b, then
the curve (x(t), y(t)), 0 ≤ t ≤ T , is not part of a closed orbit. Suggestion: Just
treat one of the cases a < b or a > b. Draw the curves (x(t), y(t)), 0 ≤ t ≤ T ,
and (x̃(t), ỹ(t)), 0 ≤ t ≤ T (see part (d)), and study your picture.

(f) Use the work you have done to show that any closed orbit must cross both the
line x = −1 and the line x = 1.

3. Consider the differential equation

x′′ + ǫ(x2 − 1)x′ + x = 0, (1)

a version of van der Pol’s equation. For ǫ = 0 all solutions have period 2π. In lecture
we used the Poincaré-Lindstedt method to compute, for small ǫ > 0, a periodic solution
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with amplitude near 2. In this problem we will use an ordinary perturbation calculation
to compute the Poincaré map (not just its fixed point).

Written as a system, our equation becomes

x′ = y,

y′ = −x− ǫ(x2 − 1)y.

We will compute the Poincaré map on the positive x-axis. For ǫ = 0, the solution that
starts at (b, 0) with b > 0 returns to the point (b, 0) after time 2π. More generally, for
a given small ǫ > 0, the solution that starts at (b, 0) returns to a point (P (b, ǫ), 0) on
the positive x-axis after time τ(b, ǫ), with P (b, 0) = b and τ(b, 0) = 2π. We wish to
compute solutions that start at (b, 0), namely

φ(t, (b, 0), ǫ) = (x(t, b, ǫ), y(t, b, ǫ)).

The time τ(b, ǫ) satisfies the equation y(τ(b, ǫ), b, ǫ) = 0 with τ(b, 0) = 2π. Then

P (b, ǫ) = x(τ(b, ǫ), b, ǫ).

Actually, we only need to calculate x(t, b, ǫ). The time τ(b, ǫ) satisfies the equation
x′(τ(b, ǫ), b, ǫ) = 0 with τ(b, 0) = 2π.

To compute the expansion of x(t, b, ǫ), we can ignore τ and write:

x(t, b, ǫ) = x0(t, b) + ǫx1(t, b) + ǫ2x2(t, b) + . . . , τ(b, ǫ) = 2π + ǫτ1(b) + ǫ2τ2(b) + . . . .

Substituting the first equation into (1), we have

x′′

0+ǫx′′

1+ǫ2x′′

2+. . .+ǫ
(

(x0+ǫx1+. . .)2−1
)(

x′

0+ǫx′

1+. . .
)

+x0+ǫx1+ǫ2x2+. . . = 0. (2)

Initial conditions are x(0, b, ǫ) = b, x′(0, b, ǫ) = y(0, b, ǫ) = 0. Therefore

x0(b, 0) = b, x1(b, 0) = 0, x2(b, 0) = 0, . . . ,

x′

0
(b, 0) = 0, x′

1
(b, 0) = 0, x′

2
(b, 0) = 0, . . . . (3)

Equating corresponding terms in (2), using (3), and suppressing the parameter b to
simplify the notation, we have at the ǫ0 level:

x′′

0
+ x0 = 0, x0(0) = b, x′

0
(0) = 0.

The solution is x0 = b cos t.

If you get stuck on the following problems, look at Example 3 in Section 6.5.3 of the
text.

(a) Write the corresponding equation and initial conditions at the ǫ1 level. Solve.
You now have x(t, b, ǫ) to first order in ǫ.

(b) Calculate x′(t, b, ǫ) to first order in ǫ by differentiating the previous expression
with respect to t.

2



(c) Write the equation x′(t, b, ǫ) = 0 to first order in ǫ. Substitute t = τ0 + ǫτ1 + . . .

and solve for τ0 and τ1.

(d) Calculate P (b, ǫ) to first order in ǫ by substituting your formula for t into your
formula for x(t, b, ǫ) and gathering terms.

(e) There is a fixed point of the Poincare map of the form b(ǫ) = b0 + ǫb1 + . . .

with b0 > 0. Calculate b0 from your formula for P (b, ǫ). (You want to solve the
equation P (b, ǫ)− b = 0.)

(f) This fixed point is hyperbolic for ǫ > 0. To see this, calculate ∂P
∂b
(b(ǫ), ǫ) to lowest

order in ǫ.

4. Use center manifold reduction to describe the phase portrait near the origin for the
system

ẋ = −y + xy,

ẏ = x+ yz,

ż = −z − x2 − y2 + z2.

Suggestion: The eigenvalues are ±i and −1. The center subspace is the xy-plane. The
center manifold is therefore

z = h(x, y) = 0 + 0 · x+ 0 · y + Ax2 +Bxy + Cy2 + . . . .

Find A, B, and C, and use them to find the differential equation on the center manifold
to third order. Use polar coordinates to see what its flow is. This should enable you
to describe the phase portrait near the origin, which is determined by the flow on the
center manifold and the fact that there is a stable manifold but no unstable manifold.

5. Let ẋ = f(x, µ) = xa(x, µ), where a(x, µ) is C1, a(0, 0) = 0, ax(0, 0) = H 6= 0, and
aµ(0, 0) = I 6= 0.

(a) Prove: There is a neighborhood of (0, 0) in xµ-space in which all solutions of
f(x, µ) = 0 lie on two curves, the first given by x = 0, the second given by
x = k(µ), where k is C1, k(0) = 0, and k′(0) = − I

H
.

(b) Let g(µ) = fx(0, µ). Show that g(0) = 0 and g′(0) = I. What does this tell us
about which of the equilibria (0, µ) near the origin are attractors and which are
repellers?

(c) Let h(µ) = fx(k(µ), µ) Show that h(0) = 0 and h′(0) = −I. What does this tell
us about which of the equilibria (k(µ), µ) near the origin are attractors and which
are repellers?

6. Use center manifold reduction to show that

ẋ = y − 2x,

ẏ = µ+ x2 − y

has a saddle-node bifurcation at (x, y, µ) = (1, 2, 1). (Suggestion: Shift coordinates to
put this point at (0, 0, 0).) Draw the phase portrait on the center manifold near this
point, and explain how your picture is related to the full phase portrait near this point.

3



7. A bead on a rotating hoop satisfies the differential equation

ẍ+ ẋ+ sin x− µ sin 2x = 0.

Here x is measured in radians from the bottom of the hoop, and the parameter µ is
related to the spin rate of the hoop. Letting y = ẋ, we obtain the system

ẋ = y,

ẏ = − sin x+ µ sin 2x− y.

(a) Show that for every µ, (x, y) = (0, 0) is an equilibrium.

(b) Show that the equilibrium at (x, y) = (0, 0) is attracting for µ < 1

2
, has a 0

eigenvalue for µ = 1

2
, and is not attracting for µ > 1

2
.

(c) Use center manifold reduction to show that a pitchfork bifurcation occurs at
µ = 1

2
. Suggestions:

• Let λ = µ− 1

2
.

• Let y = h(x, λ) = x(A + Bx + Cλ + Dx2 + . . .). No more terms should be
needed.

• Recall that sin x = x− x3

3!
+ . . ..

(d) Are the new equilibria that appear in the pitchfork bifurcation attracting? (Sug-
gestion: begin by looking at the bifurcation diagram.)
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