
MA 732 Homework 4

S. Schecter

February 17, 2013

1. Let A be an n × n matrix all of whose eigenvalues have negative real part. Let g :
Rn → Rn be bounded and satisfy a Lipschitz condition, i.e., there is a constant L > 0
such that

‖g(x1) − g(x2)‖ ≤ L‖x1 − x2‖

for all x1 and x2 in Rn. Let x0 be a point of Rn. We shall use the Contraction
Mapping Theorem to show that if L is small enough, then the solution to the initial
value problem

ẋ = Ax + g(x),

x(0) = x0,

is defined on the interval 0 ≤ t < ∞ and is bounded.

Our proof begins: If x is a continuous function from 0 ≤ t < ∞ into Rn, define a new
continuous function T (x) from 0 ≤ t < ∞ into Rn by the formula

T (x)(t) = eAtx0 +

∫ t

0

eA(t−s)g(x(s)) ds.

(a) Explain why T (x) is a bounded function of t.

(b) Show that if L is small enough, then T : C0([0,∞), Rn) → C0([0,∞), Rn) is a
contraction. How small must L be?

(c) Explain why the the fixed point of the contraction is a bounded solution of the
initial value problem.

2. Show that the differential equation ẋ = −x5 + c(t), where c(t) is a 2π-periodic continu-
ous function, has a 2π-periodic solution. Show that any such solution is asymptotically
stable. Use the graph of the Poincaré map to explain why this implies that there is
only one 2π-periodic solution.

3. Suppose that a(t) is 2π-periodic with 0 < a(t) < 1 for all t. Show that the differential
equation ẋ = x(x − a(t))(1 − x) has at least three 2π-periodic solutions. Hint: Show
that x(t) ≡ 0 and x(t) ≡ 1 are asymptotically stable 2π-periodic solutions, and use
the graph of the Poincaré map to explain why this implies that there is a 2π-periodic
solution between them.
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4. Fredholm alternative. Suppose that a(t) and b(t) are 2π-periodic continuous functions,

and let a0 =
∫ 2π

0
a(s) ds. Show the following properties of the differential equation

ẋ = a(t)x + b(t).

(a) If a0 6= 0, then there is a unique 2π-periodic orbit. It is asymptotically stable if
a0 < 0, and asymptotically unstable if a0 > 0.

(b) Suppose a0 = 0. Let c0 =
∫ 2π

0
exp{

∫ 2π

s
a(u) du} b(s) ds.

i. If c0 = 0, then every solution is 2π-periodic.

ii. If c0 6= 0, then every solution is unbounded.

Hint: Show using the variation of constants formula that the Poincaré map is

P (ξ) = ea0ξ +

∫ 2π

0

exp{

∫ 2π

s

a(u) du} b(s) ds,

and P (ξ) = ξ if and only if (1 − ea0)ξ = c0.

5. Riccati equation. Suppose that a(t) and b(t) are 2π-periodic continuous functions.
Prove that the Riccati equation

ẋ = b(t) + a(t)x − x2

has at most two 2π-periodic solutions. Hint: Suppose that φ(t) is a 2π-periodic solu-
tion. If x(t) is another solution, let y(t) = x(t) − φ(t). Show that

ẏ = c(t)y − y2,

where c(t) = a(t) − 2φ(t). Then let w(t) = 1
y(t)

. Show that

ẇ = −c(t)w + 1

Use the Fredholm Alternative to discuss separately the cases
∫ 2π

0
c(t) dt 6= 0 and

∫ 2π

0
c(t) dt = 0.

6. Recall the Lotka-Volterra system for a prey x and a predator y (formula 1.39 in our
text, phase portrait in figure 1.10):

ẋ = x − xy, (1)

ẏ = ρ(xy − y). (2)

The system (1)–(2) has an infinite number of closed orbits in the first quadrant. How-
ever, as the authors point out, this system allows a population to become arbitrarily
small yet still recover, which is not realistic. One way to fix this for the prey is to
change the growth rate of the prey in the absence of predators from 1 to x−ǫ

x+ǫ
with

0 < ǫ < 1. This growth rate is negative for x < ǫ and positive for x > ǫ, approaching
1 as x increases. The new system is

ẋ = x
x − ǫ

x + ǫ
− xy, (3)

ẏ = ρ(xy − y). (4)

In this problem we investigate the asymptotic behavior of solutions of (3)–(4) that
begin in the first quadrant. Warning: you may need some help with parts (e) and (h).
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(a) Draw the nullclines in the quadrant x ≥ 0, y ≥ 0. Indicate the direction of the
vector field on the nullclines and in the open regions bounded by the nullclines.

(b) From the vector field you drew, you might think that there are closed orbits, but
there are not. Let F (x, y) = right-hand side of (3)–(4), let g(x, y) = 1

xy
. Calculate

the divergence of g(x, y)F (x, y), then use Dulac’s Criterion to show that there are
no closed orbits in the first quadrant.

(c) Find the equilibria with x ≥ 0 and y ≥ 0. Use linearization to determine their
types (attractor, repeller, or saddle). Don’t forget that 0 < ǫ < 1.

(d) The complement of the nullclines in the first quadrant consists of four open sets:

R1 = the region where ẋ > 0 and ẏ > 0},

R2 = the region where ẋ < 0 and ẏ > 0},

R3 = the region where ẋ < 0 and ẏ < 0},

R4 = the region where ẋ > 0 and ẏ < 0}.

Explain: the portion of the local stable manifold of (ǫ, 0) that lies in the first
quadrant is in R3.

(e) From your sketch of the vector field in part (a), it appears possible that in back-
ward time, the stable manifold of (ǫ, 0) never leaves R3; its y-coordinate could
increase toward ∞. It also appears that if the stable manifold of (ǫ, 0) does leave
R3, it might never leaves R2; its x-coordinate could increase toward ∞. This part
and the next show that neither of these things in fact happens.

By part (d) we can choose a point (x1, y1) in R3 that is in the local stable manifold
of (ǫ, 0), with y1 << 1. Consider the compact region K bounded by

(I) the vertical line segment from (x1, y1) to (x1, y2), with y1 << y2;

(II) the line segment y = ρ

x1

(x− x1) + y2 from (x1, y2) to (1, y3) (you could easily
calculate y3);

(III) the portion of the half-parabola y = y3 − k(x− 1)2, x ≥ 1, 0 < k << 1, from
(1, y3) to (x4, y4), where (x4, y4) is the intersection of the half-parabola with
the nullcline y = x−ǫ

x+ǫ
;

(IV) the portion of the nullcline y = x−ǫ
x+ǫ

from (x4, y4) to (x5, y1) (note that (x5, y1)
is the intersection of this nullcline with with the line y = y1); and

(V) the horizontal line segment from (x5, y1) to (x1, y1).

Show: If y2 is sufficiently large and k is sufficiently small, then on the boundary
of K, the vector field defined by the right-hand side of (3)–(4) points out of K,
except along the portion of (IV) with 1 ≤ x ≤ x4.

Suggestion: On line segments (I) and (V), and on the portion of curve (IV) with
x5 ≤ x < 1, it is obvious that the vector field points out of K. It is equally obvious
that on the portion of curve (IV) with 1 ≤ x ≤ x4, the vector field does not point
out of K. You need to show that if y2 is sufficiently large and k is sufficiently
small, then the vector field points out of K along the curves (II) and (III). For
(II), define the function V (x, y) = y− ρ

x1

(x−x1) and show that for y2 sufficiently

large, V̇ ≥ 0 on the portion of the line V = y2 with x1 ≤ x ≤ 1. Do something
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similar for (III). For (III), I suggest that you not calculate x4. It is enough to note
that the half-parabola meets the x-axis at x = 1 +

√

y3

k
, so 1 < x4 < 1 +

√

y3

k
.

(f) Explain: In backwards time, the portion of the stable manifold of (ǫ, 0) that is in
the first quadrant either (i) approaches the equilibrium (1, 1−ǫ

1+ǫ
) without leaving

R3, or (ii) passes from R3 into R2, then from R2 into R1 through the portion of
the nullcline y = x−ǫ

x+ǫ
with 1 < x < x4.

(g) Consider the function L(x, y) = ρ(x−ln x)+y−ln y, which is constant on solutions
of (1)–(2) (text, formula 1.40). Show that for the system (3)–(4), L̇ ≤ 0 in the
region x ≥ 1, y > 0.

(h) Show that if (x0, y0) is in the open first quadrant, then {φ(t, (x0, y0)) : t ≥ 0} is
bounded. There are two cases; do only the case described by (f)(ii). You may
assume that the level curves of L are closed and surround (1, 1) as in figure 1.10
in the text.

Suggestion: Let Γ denote the portion of the stable manifold of (ǫ, 0) from (ǫ, 0)
to its first intersection with the nullcline y = x−ǫ

x+ǫ
, which we denote (x∗, y∗). Let

R denote the closed region bounded by Γ, the vertical line segment from (x∗, y∗)
to (x∗, 0), and the horizontal line segment from (x∗, 0) to the equilibrium (ǫ, 0).
If {φ(t, (x0, y0)) : t ≥ 0} lies entirely in R, then it is bounded. If not, there is a
time t1 ≥ 0 such that the point (x†, y†) = φ(t1, (x0, y0)) is not in R. You need to
show that {φ(t, (x†, y†)) : t ≥ 0} is bounded.

(i) Nothing to do on this part, just read it: From part (h), if (x0, y0) is in the open
first quadrant, then ω(x0, y0) is compact. By a slight generalization of Theorem
6.2.3 in the text, ω(x0, y0) is either a single point, a closed orbit, or a “homoclinic
cycle” (defined on p. 182). By part (b) there are no closed orbits, and it is easy to
see that there are no homoclinic cycles. Now the interior equilibrium is a repeller,
and any solution that approaches (ǫ, 0) is in its stable manifold. Conclusion: if
(x0, y0) (i) lies in the open first quadrant, (ii) is not the interior equilibrium, and
(iii) is not in the stable manifold of the saddle (ǫ, 0), then φ(t, (x0, y0)) → (0, 0)
as t → ∞.
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