MA 732 Homework 2

S. Schecter

January 19, 2013

- 1. Suppose $f : X \to Y$ satisfies (1) f is differentiable at x, and (2) for all x' in some neighborhood of x, $||f(x') f(x)|| \le \lambda ||x' x||$. Show that $||Df(x)|| \le \lambda$.
- 2. Let A(t) be a 3 × 3 matrix depending differentiably on t, and let f(t) and g(t) be 3 × 1 vectors depending differentiably on t. Compute $\frac{d}{dt} (A(t) (f(t) \times g(t)))$ using the generalized product rule. (Here × is cross product.)
- 3. Consider the map $F : C^0([a,b],\mathbb{R}^n) \to \mathbb{R}, F(\phi) = \int_a^b \phi(t) \cdot \phi(t) dt$. Write F as a composition of *three* maps, each of which is linear or bilinear. Then use the chain rule and generalized product rule to compute $DF(\phi)$.
- 4. Let B be an invertible $n \times n$ matrix, and let $G : \mathbb{R}^n \to \mathbb{R}^n$ be C^1 with $\sup_x \|DG(x)\| < \frac{1}{\|B^{-1}\|}$. Define $F : \mathbb{R}^n \to \mathbb{R}^n$ by F(x) = Bx + G(x). Prove: F has a C^1 inverse.

Method: We want to solve the equation F(x) = y for x in terms of y. Rewrite this equation as Bx + G(x) = y, then as $x = B^{-1}(y - G(x))$. Define $T : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by $T(x, y) = B^{-1}(y - G(x))$. We have shown that for a given $y \in \mathbb{R}^n$, F(x) = y if and only if x = T(x, y), i.e., if and only if x is a fixed point of $T(\cdot, y)$. Now you can use the Contraction Mapping Theorem with Parameters to prove the result. You will need to show that for each $y \in \mathbb{R}^n$, $T(\cdot, y)$ is a contraction of \mathbb{R}^n .

5. Implicit Function Theorem. Let X and Y be Banach spaces, let U be an open subset of X, and let V be an open subset of Y. Let $f : U \times V \to Y$ be C^1 . Let $(x_0, y_0) \in U \times V$. Assume that $f(x_0, y_0) = 0$ and that $D_2 f(x_0, y_0)$ is invertible. Show that there exist neighborhoods U_0 of x_0 and V_0 of y_0 such that for each $x \in U_0$ there is a unique $y \in V_0$ such that f(x, y) = 0. Moreover, if we write y = g(x), then g is C^1 .

Method: Let $A = D_2 f(x_0, y_0)$. Define $T : U \times V \to Y$ by $T(x, y) = y - A^{-1} f(x, y)$. Notice that T is C^1 .

(a) Show that T(x, y) = y if and only if f(x, y) = 0.

Choose $\delta > 0$ such that if $||x - x_0|| < \delta$ and $||y - y_0|| \le \delta$, then $||D_2 f(x, y) - A|| < \frac{1}{2||A^{-1}||}$. Now choose ϵ , $0 < \epsilon \le \delta$, such that if $||x - x_0|| < \epsilon$, then $||f(x, y_0)|| \le \frac{\delta}{2||A^{-1}||}$. Let $U_0 = \{x : ||x - x_0|| < \epsilon\}$ and let $V_0 = \{y : ||y - y_0|| \le \delta\}$. (b) Show that if $x \in U_0$ and $y \in V_0$ then $T(x, y) \in V_0$. Suggestion:

$$||T(x,y) - y_0|| = ||y - A^{-1}f(x,y) - y_0||$$

= $||A^{-1}(Ay - f(x,y) - Ay_0 + f(x,y_0)) - A^{-1}f(x,y_0)||.$

(c) Show that if $x \in U_0$ and $y, y' \in V_0$, then $||T(x,y) - T(x,y')|| \le \frac{1}{2}||y - y'||$. Suggestion:

$$||T(x,y) - T(x,y')|| = ||y - A^{-1}f(x,y) - y' + A^{-1}f(x,y')|| \le ||A^{-1}|| ||Ay - f(x,y) - Ay' + f(x,y')||.$$

- (d) Explain how the theorem now follows from the Contraction Mapping Theorem with Parameters.
- (e) Now that you know that g is differentiable, use the formula f(x, g(x)) = 0 to derive a formula for Dg(x).