MA 732 Homework 2

S. Schecter

January 19, 2013

1. Suppose $f: X \rightarrow Y$ satisfies (1) f is differentiable at x, and (2) for all x^{\prime} in some neighborhood of $x,\left\|f\left(x^{\prime}\right)-f(x)\right\| \leq \lambda\left\|x^{\prime}-x\right\|$. Show that $\|D f(x)\| \leq \lambda$.
2. Let $A(t)$ be a 3×3 matrix depending differentiably on t, and let $f(t)$ and $g(t)$ be 3×1 vectors depending differentiably on t. Compute $\frac{d}{d t}(A(t)(f(t) \times g(t)))$ using the generalized product rule. (Here \times is cross product.)
3. Consider the map $F: C^{0}\left([a, b], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}, F(\phi)=\int_{a}^{b} \phi(t) \cdot \phi(t) d t$. Write F as a composition of three maps, each of which is linear or bilinear. Then use the chain rule and generalized product rule to compute $D F(\phi)$.
4. Let B be an invertible $n \times n$ matrix, and let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be C^{1} with $\sup _{x}\|D G(x)\|<$ $\frac{1}{\left\|B^{-1}\right\|}$. Define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $F(x)=B x+G(x)$. Prove: F has a C^{1} inverse.
Method: We want to solve the equation $F(x)=y$ for x in terms of y. Rewrite this equation as $B x+G(x)=y$, then as $x=B^{-1}(y-G(x))$. Define $T: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T(x, y)=B^{-1}(y-G(x))$. We have shown that for a given $y \in \mathbb{R}^{n}, F(x)=y$ if and only if $x=T(x, y)$, i.e., if and only if x is a fixed point of $T(\cdot, y)$. Now you can use the Contraction Mapping Theorem with Parameters to prove the result. You will need to show that for each $y \in \mathbb{R}^{n}, T(\cdot, y)$ is a contraction of \mathbb{R}^{n}.
5. Implicit Function Theorem. Let X and Y be Banach spaces, let U be an open subset of X, and let V be an open subset of Y. Let $f: U \times V \rightarrow Y$ be C^{1}. Let $\left(x_{0}, y_{0}\right) \in U \times V$. Assume that $f\left(x_{0}, y_{0}\right)=0$ and that $D_{2} f\left(x_{0}, y_{0}\right)$ is invertible. Show that there exist neighborhoods U_{0} of x_{0} and V_{0} of y_{0} such that for each $x \in U_{0}$ there is a unique $y \in V_{0}$ such that $f(x, y)=0$. Moreover, if we write $y=g(x)$, then g is C^{1}.
Method: Let $A=D_{2} f\left(x_{0}, y_{0}\right)$. Define $T: U \times V \rightarrow Y$ by $T(x, y)=y-A^{-1} f(x, y)$. Notice that T is C^{1}.
(a) Show that $T(x, y)=y$ if and only if $f(x, y)=0$.

Choose $\delta>0$ such that if $\left\|x-x_{0}\right\|<\delta$ and $\left\|y-y_{0}\right\| \leq \delta$, then $\left\|D_{2} f(x, y)-A\right\|<\frac{1}{2\left\|A^{-1}\right\|}$. Now choose $\epsilon, 0<\epsilon \leq \delta$, such that if $\left\|x-x_{0}\right\|<\epsilon$, then $\left\|f\left(x, y_{0}\right)\right\| \leq \frac{\delta}{2\left\|A^{-1}\right\|}$. Let $U_{0}=\left\{x:\left\|x-x_{0}\right\|<\epsilon\right\}$ and let $V_{0}=\left\{y:\left\|y-y_{0}\right\| \leq \delta\right\}$.
(b) Show that if $x \in U_{0}$ and $y \in V_{0}$ then $T(x, y) \in V_{0}$. Suggestion:

$$
\begin{aligned}
& \left\|T(x, y)-y_{0}\right\|=\left\|y-A^{-1} f(x, y)-y_{0}\right\| \\
& \quad=\left\|A^{-1}\left(A y-f(x, y)-A y_{0}+f\left(x, y_{0}\right)\right)-A^{-1} f\left(x, y_{0}\right)\right\| .
\end{aligned}
$$

(c) Show that if $x \in U_{0}$ and $y, y^{\prime} \in V_{0}$, then $\left\|T(x, y)-T\left(x, y^{\prime}\right)\right\| \leq \frac{1}{2}\left\|y-y^{\prime}\right\|$. Suggestion:

$$
\begin{aligned}
&\left\|T(x, y)-T\left(x, y^{\prime}\right)\right\|=\left\|y-A^{-1} f(x, y)-y^{\prime}+A^{-1} f\left(x, y^{\prime}\right)\right\| \\
& \leq\left\|A^{-1}\right\|\left\|A y-f(x, y)-A y^{\prime}+f\left(x, y^{\prime}\right)\right\|
\end{aligned}
$$

(d) Explain how the theorem now follows from the Contraction Mapping Theorem with Parameters.
(e) Now that you know that g is differentiable, use the formula $f(x, g(x))=0$ to derive a formula for $D g(x)$.

