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S. Schecter

January 9 and 14, 2012

1. Consider the system

ẋ = xy, (1)

ẏ = x2 + 2y2 + x3. (2)

If we think of this as Ẋ = F (X), then F (0) = 0 and DF (0) = 0. Thus linearization
does not help us to figure out the nature of the equilibrium at the origin.

(a) Convert to polar coordinates using x = r cos θ, y = r sin θ. Recall from last
semester that when you do this,

ṙ =
1

r
(xẋ+ yẏ), θ̇ =

1

r2
(xẏ − yẋ).

(b) The system you found in part (a) should have ṙ = θ̇ = 0 when r = 0 because of
a factor of r2 in the ṙ equation and a factor of r in the θ̇ equation. Divide your
system by r. In the region r > 0 this only changes the length of vectors, not their
direction.

(c) The system you found in part (b) still should have a factor of r in the ṙ equation,
so the circle r = 0 is invariant. Use the θ̇ equation you found in part (b) to draw
the phase portrait of this system on the circle r = 0, locating the equilibria on
that circle in the process.

(d) For the full system of part (b), determine the types of the equilibria on the circle
r = 0 by linearization.

(e) Use the information from parts (c) and (d) to draw the phase portrait near the
circle r = 0 of the system you found in part (b).

(f) Use the information from part (e) to draw the phase portrait of the original system
(1)–(2) near (x, y) = (0, 0).

2. Consider the system

ẋ = x2(y − x), (3)

ẏ = y2(y − 2x). (4)

As in problem 1 there is an equilibrium at the origin, but linearization does not help
to analyze it.
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(a) Convert to polar coordinates using x = r cos θ, y = r sin θ.

(b) The system you found in part (a) should have ṙ = θ̇ = 0 when r = 0 because of
a factor of r3 in the ṙ equation and a factor of r2 in the θ̇ equation. Divide your
system by r2.

(c) The system you found in part (b) still should have a factor of r in the ṙ equation,
so the circle r = 0 is invariant. Use the θ̇ equation you found in part (b) to draw
the phase portrait of this system on the circle r = 0, locating the equilibria on
that circle in the process. Suggestion: Show that you can rewrite the θ̇ equation
as

θ̇ =
1

2
cos θ sin θ(2− 3 sin 2θ).

The equation 2− 3 sin 2θ = 0 has four solutions in the interval 0 ≤ θ < 2π. Thus
in all there are eight equilibria on the circle. The direction of flow changes sign
at each equilibrium (you don’t need to check this).

(d) For the full system of part (b), determine the types of the equilibria on the
circle r = 0 by linearization. Suggestion: Look at the picture in part (c). Each
equilibrium that is attracting on the circle has a negative eigenvalue, and each
equilibrium that is repelling on the circle has a positive eigenvalue (you don’t
need to check this). The other eigenvalue is given by

∂ṙ

∂r
= cos3 θ sin θ − cos4 θ + sin4 θ − 2 cos θ sin3 θ.

You may want to just evaluate this numerically at the four equilibria where it is
not easy to evaluate.

(e) Use the information from parts (c) and (d) to draw the phase portrait near the
circle r = 0 of the system you found in part (b).

(f) Use the information from part (e) to draw the phase portrait of the original system
(3)–(4) near (x, y) = (0, 0).

3. Consider the system

ẋ = xy − x2y + y3, (5)

ẏ = y2 + x3 − xy2. (6)

As in problem 1 there is an equilibrium at the origin, but linearization does not help
to analyze it.

(a) Convert to polar coordinates using x = r cos θ, y = r sin θ.

(b) The system you found in part (a) should have ṙ = θ̇ = 0 when r = 0 because of a
factor of r2 in both the ṙ equation and the θ̇ equations. Divide your system by r2.
Now ṙ and θ̇ depend only on θ! The circle r = 0 is not invariant: many solutions
cross it.

(c) For the system of part (b), find the regions where ṙ > 0, ṙ < 0, θ̇ > 0, θ̇ < 0.
They are separated by “nullclines,” i.e., curves (in this case lines) where ṙ = 0 or
θ̇ = 0.

2



(d) Use the information from part (c) to draw the phase portrait of the system you
found in part (b).

(e) Use the information from part (d) to draw the phase portrait of the original system
(5)–(6). Remember: your system in part (b) had solutions that crossed r = 0,
but the origin is an equilibrium for the original system.

4. Consider the differential equation

ẋ = x2 + y2 − 1, (7)

ẏ = 5(xy − 1). (8)

(a) Show that there are no equilibria.

(b) Use the method of nullclines to draw the phase portrait in the finite plane. (Draw
the curves where ẋ = 0 and ẏ = 0. Determine the signs of ẋ and ẏ in the regions
between these curves. Use this information to draw the phase portrait.)

(c) Show that there is a unique orbit Γ+ for which y

x
→ 0 as x → ∞, and a unique

orbit Γ− for which y

x
→ 0 as x → −∞. Suggestion: use the coordinates u = 1

x
,

v = y

x
.

(d) On Γ+, what does y

x
approach as x → −∞? On Γ−, what does y

x
approach as

x→ ∞? Try to answer these questions by combining information from parts (b)
and (c).

5. Define F : C0([a, b], R) → R by F (φ) =
∫ b

a
(φ(t))2 dx. Using the definition of deriva-

tive, prove that F is C1, and DF (φ)ψ =
∫ b

a
2φ(t)ψ(t) dt.

6. Let Y1, . . . , Yk by Banach spaces. Here you’ll fill in some details of things we said in
class.

(a) Show that Y1 × . . . × Yk, with the norm ‖(y1, . . . , yk)‖ = max1≤i≤k ‖yi‖i, is a
Banach space. (In other words, show that the “norm” just defined is really a
norm, and that Y1 × . . .× Yk with this norm is complete.)

(b) Define Πi : Y1 × . . .× Yk → Yi by Πi(y1, . . . , yk) = yi. Show that Πi is a bounded
linear map with norm 1.

(c) Let X be another Banach space, and let f : X → Y1 × . . . × Yk be a map,
f(x) = (f1(x), . . . , fk(x)). Show that f is continuous if and only if each fi is
continuous. (It may simplify things to note that fi = Πi ◦ f .)

(d) Again let X be another Banach space, and let f : X → Y1 × . . .× Yk be a map,
f(x) = (f1(x), . . . , fk(x)). Assume that each fi is differentiable at a point x ∈ X .
Show that f is differentiable at x, and

Df(x)h = (Df1(x)h, . . . , Dfk(x)h).
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