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Exercise 8.16. Suppose that 4 : R™ — R" is a linear transformation with
exactly one zero eigenvalue. Show that there is a nonzero “left eigenvector” w €
R™ such that w™A = 0. Also, show that v is in the range of A if and only if

(v, w) = 0. Discuss how this exercise gives a method to verify the hypotheses of
Theorem 8.12.

Exercise 8.17. Verify the existence of a saddle-node bifurcation for the func-
tion f : R* x R — R? given by

f(:c,y, A) — ()\ - $2= _y)'

Exercise 8.18. Determine the bifurcation diagram for the phase portrait of
the differential equation

. .2
zi+az” =b
where a and b are parameters.

Exercise 8.19. [Hamiltonian saddle-node] Suppose that
w=f(u,A), u€R? (8.12)

is a planar Hamiltonian family with parameter A € R. Prove that if f(uo, Ag) =0
and the corresponding linearization at up has a zero eigenvalue, then this eigen-
value has algebraic multiplicity two. In particular, a planar Hamiltonian system
cannot have a saddle-node. Define (ug, Ao) to be a Hamiltonian saddle-node at
Ao if f(uo, Ao) = 0 and fu(uo, Ao) has a zero eigenvalue with geometric multiplic-
ity one. A Hamiltonian saddle-node bifurcation occurs if the following conditions
hold:

e There exist so > 0 and a smooth curve 7 in R* x R such that v(0) = (uo, Ao)
and f(y(s)) =0 for |s| < so.
e The curve of critical points v is quadratically tangent to R* x {)o} at
(uo, o).
e The Lyapunov stability type of the rest points on the curve vy changes at
s=0. ;
Prove the following proposition formulated by Jason Bender [24]: Suppose that
the origin in R* x R is a Hamiltonian saddle-node for (8.12) and k € R? is a
nonzero vector that spans the one-dimensional kernel of the linear transformation
f«(0,0). If the two vectors fr(0,0) € R? and f,.(0,0)(k, k) € R? are nonzero and

not in the range of f.(0,0), then a Hamiltonian saddle-node bifurcation occurs
at the origin.

Reformulate the hypotheses of the proposition in terms of the Hamiltonian
for the family so that there is no mention of the vector k. Also, discuss the
Hamiltonian saddle-node bifurcation for the following model of a pendulum with
feedback control

T =y, y=—sinz—axr+ 0

(see [236)). Generalize the proposition to Hamiltonian systems on R*". {See [160]
for the corresponding result for Poincaré maps at periodic orbits of Hamiltonian
systems.)
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Consider the family of differential equations
w=F(u)), ueRY XeRM (8.13)

where X is a vector of parameters.

Definition 8.20. An ordered pair (ug, o) € RY x RM consisting of a
parameter-value Ao and a rest point ug for the corresponding member of
the family (8.13) is called a Hopf point if there is a curve C in RN x RM|
called an associated curve, that is given by € — (Ci(€), Ca(€)) and satisfies
the following properties:

(i) C(0) = (uo, Ag) and lF(Cl(e), Cale)) = 0.

(ii) The linear transformation given by the derivative F.(Cy(e), Cae)) :
RN — RY has a pair of nonzero complex conjugate eigenvalues a(¢) £
B(e)i, each with algebraic (and geometric) multiplicity one. Also,
a(0) =0, &/(0) # 0, and B(0) # 0.

(iii) Except for the eigenvalues £43(0)1, all other eigenvalues of F%, (0, Ao)
have nonzero real parts.

Our definition says that a one-parameter family of differential equations
has a Hopf point if a single pair of-complex conjugate eigenvalues, associated
with the linearizations of a corresponding family of rest points, crosses the
imaginary axis in the complex plane with nonzero speed at the parameter
value of the bifurcation point, whereas all other eigenvalues have nonzero
real parts. We will show that if some additional generic assumptions are
met, then there are members of the family (8.13) that have a limit cycle
near the Hopf point.

Let us show first that it suffices to consider the bifurcation for a planar
family of differential equations associated with the family (8.13).

Because the linear transformation given by the derivative Fy,(ug, Ag) at
the Hopf point (ug, Ao) has exactly two eigenvalues on the imaginary axis,
the results in Chapter 4, especially equation (4.24), can be used to show
that there is a center manifold reduction for the family (8.13) that produces
a family of planar differential equations

W= f(u,)), uweR:, AeRM, (8.14)

with a corresponding Hopf point. Moreover, there is a product neighbor-
hood U x V c RN x RM of the Hopf point (ug, Ag) such that if A € V'
and the corresponding member of the family (8.13) has a bounded orbit in
U, then this same orbit is an invariant set for the corresponding member
of the planar family (8.14). Thus, it suffices to consider the bifurcation of
limit cycles from the Hopf point of this associated planar family.
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Figure 8.3: Supercritical Hopf bifurcation: A limit cycle emerges from a
weak focus as the bifurcation parameter is increased.

There are important technical considerations related to the smoothness
and uniqueness of the planar family obtained by a center manifold reduction
at a Hopf point. For example, let us note that by the results in Chapter 4
if the family (8.13) is C', then the augmented family, obtained by adding
a new equation corresponding to the parameters, has a local C! center
manifold. But this result is not strong enough for the proof of the Hopf
bifurcation theorem given below. In fact, we will require the reduced planar
system (8.14) to be C*. Fortunately, the required smoothness can be proved.
In fact, using the fiber contraction principle as in Chapter 4, together with
an induction argument, it is possible to prove that if 0 < r < oo and the
family (8.13) is C™, then the reduced planar system at the Hopf point is also
CT in a neighborhood of the Hopf point. Let us also note that whereas local
center manifolds are not necessarily unique, it turns out that all rest points,
periodic orbits, homoclinic orbits, et cetera, that are sufficiently close to
the original rest point, are on every center manifold. Thus, the bifurcation
phenomena that are determined by reduction to a center manifold do not
depend on the choice of the local center manifold (see, for example, [58]).

Let us say that a set S C R" has radii (ry,73) relative to a point p if
r1 > 0 is the radius of the smallest RV -ball centered at p that contains S
and the distance from S to p is r9 > 0.

Definition 8.21. The planar family (8.14) has a supercritical Hopf bifur-
cation at a Hopf point with associated curve € — (e1(€), ca(€)) if there are
three positive numbers ¢y, K, and K3 such that for each e in the open
interval (0,€g) the differential equation % = f(u,cz(€)) has a hyperbolic
limit cycle with radii

(K1 + O(e), Kav/e + O(€))
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relative to the rest point u = ¢;(€). The bifurcation is called subecritical
if there is a similar limit cycle for the systems with parameter values in
the range —ep < € < 0. Also, we say that the family (8.13) has a super-
critical (respectively, subcritical) Hopf bifurcation at a Hopf point if the
corresponding (center manifold) reduced system (8.14) has a supercritical
(respectively, subcritical) Hopf bifurcation.

To avoid mentioning several similar cases as we proceed, let us consider
only Hopf points such that the parametrized eigenvalues o+ 3 satisfy the
additional assumptions

o’(0) >0,  B(0)>o. (8.15)

In particular, we will restrict attention to the supercritical Hopf bifurcation
as depicted in Figure 8.3.

Under our standing hypothesis (8.15), a rest point on the associated curve
€ — ¢(e) of the Hopf point is a stable hyperbolic focus for the corresponding
system (8.14) for € < 0 and an unstable hyperbolic focus for € > 0. We will
introduce an additional hypothesis that implies “weak attraction” toward
the rest point ug at the parameter value Ag. In this case, there is a stable
limit cycle that “bifurcates from this rest point” as € increases through e =
0. This change in the qualitative behavior of the system as the parameter
changes is the bifurcation that we wish to describe, namely, the supercritical
Hopf bifurcation.

Before defining the notion of weak attraction, we will simplify the fam-
ily (8.14) by a local change of coordinates and a reduction to one-parameter.
Note that, after the translation v = u—c; (), the differential equation (8.14)
becomes

v=f(v+ c1(e), A)

with f(0 + ci(e),c2(e)) = 0. In particular, in the new coordinates, the
associated rest points remain at the origin for all values of the parameter
€. Thus, it suffices to consider the family (8.14) to be of the form

= f(u,\), ueR? MeR, (8.16)

only now with a Hopf point at (u,A) = (0,0) € R? x R and with the
associated curve ¢ given by A — (0, A).

Proposition 8.22. If (u,A) = (0,0) € R? x R s a Hopf point for the
family (8.16) with associated turve X — (0, A) and eigenvalues c(A\)£B()\) 1,
then there is a smooth parameter-dependent linear change of coordinates of
the form u = L(A)z that transforms the system matriz A(\) := f£,(0, ) of
the linearization at the origin along the associated curve into the Jordan

normal form
() &)
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Proof. Suppose that w(X\) = u1(A) +u2(A) 1 is a (nonzero) eigenvector for
the eigenvalue a(A) + B(A)i. We will show that there is an eigenvector of

the form
1 _ ?)1()\) s
(o) (UQ(A)) v
To prove this fact, it suffices to find a family of complex numbers ¢(A) +
d(A) i such that

(c+di)(ug +ugi) = (é) - (Ul) i

Uz

for a family of numbers v;,vs € R where the minus sign is inserted to
determine a convenient orientation. Equivalently, it suffices to solve the
equation

cuy — dig = (é),

which is expressed in matrix form as follows:

e (5) = ()

Since the eigenvectors w and w corresponding to the distinct eigenvalues
« + Gi are linearly independent and

=) ( 2 7) = wm),

-1 1

it follows that det [u;, —ug] # 0, and therefore we can solve (uniquely) for
the vector (c,d).
Using this fact, we have the eigenvalue equation

A((5)-1(2))=erm((5)-i(2)):

as well as its real and imaginary parts
1y _ /1 vy vy _ .1 v, o
A(O)—Q(O)Jr,ﬁ(?)z), A(w)_ ﬁ(0>+a(vz). (8.17)
Hence, if
L 1 Uy
B (0 Uz)’

_r(e P
AL—L(ﬂ a).

then
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Again, since the vectors uy and ug are linearly independent, so are the
following nonzero scalar multiples of these vectors

() ()

Thus, we have proved that the matrix L is invertible. Moreover, we can
solve explicitly for vy and vs. Indeed, using the equations (8.17), we have

w-an(5) =2 (5)
(o8 o)

it a — & ,UHG'QL
1. = /B ) 2= s

B

Here 3 := B()) is not zero at A = 0, so the functions A = v1(A) and A —
va(A) are smooth. Finally, the change of coordinates v = L(A)z transforms
the family of differential equations (8.16) to 2 = L™*(X)f(L()\)z, ), and
the linearization of the transformed equation at z = 0 is given by

(203 ~50).
B a(})
The matrix function A — L~1(}) is also smooth at the origin. It is given
by
1 vy —w
11 (v 1
& - Vo ( 0 1 )

where 1/va(A) = 5(A)/az1(A). But, if ag, (A) = 0, then the linearization has
real eigenvalues, in contradiction to our hypotheses. O

If we now set

then

By Proposition 8.22, there is no loss of generality if we assume that the
differential equation (8.16) has the form

where the functions g and® h together with their first partial derivatives
with respect to the space variables vanish at the origin; the real functions
A = afA) and A — B(X) are such that a(0) = 0 (the real part of the
linearization must vanish at A = 0) and, by our standing assumption,
a'(0) > 0 (the derivative of the real part does not vanish at A = 0); and,
by the assumption that 3(0) > 0, the eigenvalues a()\) £43(\) are nonzero
complex conjugates for |A| sufficiently close to zero. Moreover, there is no
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loss of generality if we assume that 5(0) = 1. Indeed, this normalization
can be achieved by a reparametrization of time in the family (8.18).

We will seek a periodic orbit of the family (8.18) near the origin of
the coordinate system by applying the implicit function theorem to find
a zero of the associated displacement function that is defined along the
z-axis. For this application of the implicit function theorem we have to
check that the displacement function has a smooth extension to the origin.
While it is clear that the displacement has a continuous extension to the
origin—define its value at the rest point to be zero—it is not clear that
the extended displacement function is smooth. Indeed, the proof that the
return map exists near a point p on a Poincaré section is based on the
implicit function theorem and requires that the vector field be transverse
to the section at p. But this condition is not satisfied at the origin for
members of the family (8.18) because the vector field vanishes at this rest
point.

Let us show that the displacement function for the system (8.18) is indeed
smooth by using the blowup construction discussed in Section 1.8.5. The
idea is that we can bypass the issue of the smoothness of the displacement
at the origin for the family (8.18) by blowing up at the rest point. In fact,
by changing the family (8.18) to polar coordinates we obtain the family

t=aNr+p(r,6,)),  6=p()+q(r,0,) (8.19)
where
p(r,8,) := g(rcosb, p sin#, A} cos @ + h{r cosf,rsinf, X)sin b,
q(r,8, ) :

%(h(r cos@,7sinf, A) cos @ — g(rcosf,rsind, A)sin6).

Since (z,y) — g(z,y,A) and {z,y) — h(z,y, ) and their first partial
derivatives vanish at the origin, the function ¢ in system (8.19) has a re-
movable singularity at » = 0. Thus, the system is smooth. Moreover, by
the change to polar coordinates, the rest point at the origin in the plane
has been blown up to the circle {0} x T on the phase cylinder R x T. In
our case, where 8{)) # 0, the rest point at the origin (for each choice of
that parameter \) corresponds to the periodic orbit on the cylinder given
by the solution r(t) = 0 and 8(t) = B(A)t. A Poincaré section on the cylin-
der for these periodic orbits, for example the line 8§ = 0, has a smooth
(parametrized) return map that is equivalent to the corresponding return
map on the z-axis for the family (8.18). Thus, if we blow down—that is,
project back to the plane—then the image of our transversal section is a
smooth section for the flow with a smooth return map and a smooth re-
turn time map. In particular, both maps are smooth at the origin. In other
words, the displacement function on the z-axis of the plane is conjugate
(by the change of coordinates) to the smooth displacement function defined
on the line # = 0 in the cylinder.
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We will take advantage of the geometry on the phase cylinder: There
our bifurcation problem concerns the bifurcation of periodic orbits from
a periodic orbit rather than the bifurcation of periodic orbits from alrest
point. Indeed, Hopf bifurcation on the phase cylinder is analogous to bifur-
cation from a multiple limit cycle as in our previous discussion following
the Weierstrass preparation theorem (Theorem 5.15) on page 384.

For the generic case, we will soon see that the limit cycle, given on thle
cylinder by the set {(r,6) : v = 0} for the family (8.19) at A =0, has mglt]—
plicity three. But, unlike the general theory for bifurcation from a multly?le
limit cycle with multiplicity three, the Hopf bifurcation has an essential
new feature revealed by the geometry of the blowup: The bifurcation is
symmetric with respect to the set {(r,0) : 7 = 0}. More precisely, each
member of the family (8.19) is invariant under the change of coordinates
given by

R = —r, ©=0-m (8.20)

While this symmetry has many effects, it should at least be clear that if
a member of the family (8.19) has a periodic orbit that does not coincide
with the set {(r,) : r = 0}, then the system has two periodic orbits: one
in the upper half cylinder, and one in the lower half cylinder. Also, if the
set {(r,08) : r = 0} is a limit cycle, then it cannot be semistable, that
is, attracting on one side and repelling on the other (see Exercise 8.23).
The geometry is similar to the geometry of the pitchfork bifurcation (see
Exercise 8.11 and Section 8.4). .

The general theory of bifurcations with symmetry is an important topic
that is covered in detail in the excellent books [97] and [98].

Exercise 8.23. Prove: If the set ' := {(r,0) : v = 0} on the cylinder is a limit
cycle for the member of the family (8.19) at A = 0, then this limit cycle is not
semistable. State conditions that imply T is a limit cycle and conditions that
imply it is a hyperbolic limit cycle.

By our hypotheses, if || is sufficiently small, then the line {(r,8) : § =0}
is a transversal section for the flow of system (8.19) on the phase cylinder.
Moreover, as we have mentioned above, there is a smooth displacement
function defined on this section. In fact, let t — (r(¢,£, ), 0(t,€, X)) denote
the solution of the differential equation (8.19) with the initial condition

T(01§9}‘) =¢, G(Oaé-?)\) =0,
and note that (because 8(0) = 1)
6(2r,0,0) =27,  6(2m,0,0) = B(0) £ 0.

By an application of the implicit function theorem, there is a product neigh-
borhood Up x Vy of the origin in Rx R, and a function T : Uyx Vo — Rsuch
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that T'(0,0) = 27 and 6(T(&,A), £, A) = 2. Thus, the desired displacement
function 6 : Uy x Vo — R is defined by

(6, M) :=7(T(, 1),6,2) - & (8.21)

The displacement function (8.21) is complicated by the presence of the
implicitly defined return-time function T, a difficulty that can be avoided
by yet another change of coordinates. Indeed, since T°(0,0) = 27 and
6(t,0,0) = B(0) # 0, it follows from the continuity of the functions T
and # and the implicit function theorem that there is a product neigh-
borhood U x V of the origin with U x V' C Up x Wy such that for each
(€,A) € U x V the function ¢t — 8(¢,&, A) is invertible on some bounded
time interval containing T'(£, \) (see Exercise 8.28). Moreover, if the inverse
function is denoted by s — 6-1(s,£, M), then the function p: RxUxV = R

defined by
p(s,6:2) =r(071(s,€,1),€,2)
is a solution of the initial value problem

dp _ a(M)p+p(p, s, A) B
B B0 Tals ) POSN=E

and

P27, &, A) = r(T(£,A),€, M)

If we rename the variables p and s to new variables r and €, then the
displacement function § : U x V' — R as defined in equation (8.21) with
respect to the original variable r is also given by the formula

6(§,A) =r(2m, &, N) — ¢ (8.22)
where 6 — 7(6,£,A) is the solution of the initial value problem

dr _ a(Mr+p(r,6,A)
g B\ +aq(r,6,))’

r(0,£,1) = &. (8.23)

In particular, with respect to the differential equation (8.23), the “return
time” does not depend on the position £ along the Poincaré section or the
value of the parameter A; rather, it has the constant value 2.

Definition 8.24. Suppose that (u,A) = (0,0) € R? x R is a Hopf point
for the family (8.16). The corresponding rest point v = 0 is called a weak
attractor (respectively, a weak repeller) if the associated displacement func-
tion (8.22) is such that 0.¢¢(0,0) < O (respectively, d¢¢¢(0,0) > 0). In
addition, the Hopf point (u, A) = (0,0) is said to have multiplicity one if
deee(0,0) # 0.
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Theorem 8.25 (Hopf Bifurcation Theorem). If the family of differ-
ential equations (8.16) has a Hopf point at (u, ) = (0,0) € R? x R and the
corresponding rest point at the origin is a weak attractor (respectively, o
weak repeller), then there is a supercritical (respectively, suberitical) Hopf
bifurcation at this Hopf point.

Proof. Let us assume that the family (8.16) is C%. By Proposition 8.22,
there is a smooth change of coordinates that transforms the family (8.16)
into the family (8.18). Moreover, because 3(0) # 0, the function

a(A)r +p(r, 6, A)

B +a(r6,7)

and therefore the family of differential equations

S(r,8,)) =

dr
= S(r,6,A), (8.24)

is as smooth as the original differential equation (8.16); that is, it is at least
in class C4.

The associated displacement function ¢ defined in equation (8.22) is given
by the C* function

8(&,A) i=r(2m,E,N) — & (8.25)

where 6 — (8, £, A) is the solution of the differential equation (8.24) with
initial condition r(0,&,A) = £. Moreover, each function £ — §(&, A) is de-
fined in a neighborhood of £ =0 in R.

Since 6(0, A) = 0, the displacement function is represented as a series,

8(&,A) = 01(A)E + 82(NE? + 83(NE° + O(&Y),
whose first-order coefficient is given by
01(A) = 6¢(0,A) = re(2m,0,A) — 1
where @ — r¢(6,0, A) is the solution of the variational initial value problem

drg
de

a(\)
B ©

Hence, by solving the scalar first order linear differential equation, we have
that

= S—,-(O, 9, )\)Tg = ?"E(0,0,A) =1.

81(A) = re(2m,0,A) — 1 = 27 e(N/B0O) _ 1,

Moreover, since (0) = 0, it follows that

8(€,0) = £2(62(0) + 83(0)¢ + O(£2)).
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Note that if 82(0) # 0, then §(¢, 0) has constant sign for sufficiently small
|€] # 0, and therefore the trajectories of the corresponding system (8.19) at
A = 0 do not spiral around the origin of its phase plane (draw a picture);
equivalently, the periodic orbit {(r,8) : r = 0} on the phase cylinder is a
semistable limit cycle. But using the assumptions that a(0) = 0 and 3(0) #
0 and Exercise 8.23, this qualitative behavior cannot occur. In particular,
the existence of a semistable limit cycle on the phase cylinder violates
the symmetry (8.20), which carries over to the differential equation (8.23).
In fact, if & — r(f,&, ) is a solution of equation (8.23), then so is the
function § — —r(@ + 7, &, A). For all of these equivalent reasons, we have
that §3(0) = 0.

Consider the function A : R x R — R defined on the domain of the
displacement function by

A(€,2) = 81(A) + 82(N€ + 83(N)€ + O(€?),
and note that
A(0,0) = e2me(®/B(0) _ 1 = g,

Ag(0,0) = 62(0) =0,

AEE(D’ 0) = 253(0) = 5555(0, 0)/3 7{= 0,

A (0,0) = 2ma/(0)/B(0) > 0.
By Proposition 8.2, the function A has a saddle-node bifurcation at £ =0
for the parameter value A = 0. In particular, there is a curve £ — (&, v(¢))

in R x R with v(0) = 0, v/(0} = 0, and ~"(0) # 0 such that A(¢,v(£)) = 0.
As a result, we have that

9(€,7(£)) = €A (£, 7(€)) =0,

and therefore if A = ~(¢), then there is a periodic solution of the corre-
sponding member of the family (8.18) that meets the Poincaré section at
the point with coordinate £.
For the remainder of the proof, let us assume that d¢g¢(0,0) < 0; the
case where d¢¢¢(0,0) > 0 is similar.
By Proposition 8.2, we have the inequality
H(O) - _/—\‘EE(O’O) _ ﬁ(O)

Ax(0,0) — 6ma/(0) 9eeel0,0) > 0,

and therefore the coefficient of the leading-order term of the series

/\:v(é)=%@

does not vanish. Hence, the position coordinate £ > 0 corresponding to a
periodic solution is represented as follows by a power series in v/ :

_ 127a/(0) ij2 ;

& +0(£%)
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Thus, the distance from the periodic orbit to the origin is of the form
K. 2\/E+O(k) for some constant K5. Using the construction in the discussion
following display (8.21), it is easy to see that the function S = S(r,8, A) can
be restricted to a compact subset of its domain with no loss of generality
for our bifurcation analysis. By continuity, the magnitude of the partial
derivative S, is bounded by some constant K > 0 on such a compact set.
Note that S(0,6,A) = 0 and apply the mean value theorem to S to obtain
the inequality

0 . 0
@& =16l + [ 15t 01d6 < el + K [ rlds
By an application of Gronwall’s inequality, we have that
Ir(8,€,0)] < €€

on our pericdic solution. Hence, the periodic solution lies in a ball whose
radius is K1k + O(k) for some constant K, as required.

The proof will be completed by showing that the periodic solution cor-
responding to £ given by the equation (8.26) is a stable hyperbolic limit
cycle.

Consider the Poincaré map defined by

PE,A) =38(5A) +E=&(A(A) +1)

and note that
Pe(€,0) = EAg(E,0) + A6, M) + 1.

At the periodic solution we have A = y(£), and therefore

Pe(£,7(8)) = £Ae(£,7(8)) + 1.

Moreover, because A(&,v(£)) = 0, we have the identity

Ag(€,7(8) = —A,\(cf,_“/(é))'v’(f)v

Using the relations Ax(0,0) > 0, 4'(0) = 0, and v”(0) > 0, it follows that
if £ > 0 is sufficiently small, then +/'(§) > 0 and —A, (&, ¥(€)) < 0; hence,
Ae(€,7(€)) < 0 and 0 < Pe(€,7(€)) < 1. In other words, the periodic
solution is a hyperbolic stable limit cycle. O

While the presentation given in this section discusses the most important
ideas needed to understand the Hopf bifurcation, there are a few unresolved
issues. Note first that sufficient conditions for the Hopf bifurcation are
given only for a two-dimensional system obtained by restriction to a center
manifold, not for the original system of differential equations. In particular,
the definition of a weak attractor is only given for two-dimensional systems.
Also, we have not discussed an efficient method to determine the sign of
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the third space-derivative of the displacement function, an essential step
for practical applications of the Hopf bifurcation theorem. For a resolution
of the first issue see [151]; the second issue is addressed in the next section.

Exercise 8.26. Consider the two systems
F=Ar+7°, 6=1+ar’,

where (r, §) are polar coordinates. Show that the + sign system has a supercritical
Hopf bifurcation and the — sign system has a subcritical Hopf bifurcation. The
given systems are normal forms for the Hopf bifurcation.

Exercise 8.27. Show that the system
&= Az —y+zy°, g=z+ M+

has a subcritical Hopf bifurcation. Hint: Change to polar coordinates and com-
pute (explicitly) the Poincaré map defined on the positive z-axis. Recall that
Bernoulli’s equation # = a(t)z + b(t)z"" is transformed to a linear equation by

n

the change of variables w = z™".

Exercise 8.28. Suppose that K C Rand W C RF are open sets, g : K x W —
R is a smooth function, and T' > 0. If [0,7] C K, 0 € W, and g:(t,0) # 0
for all £ € K, then there are open product neighborhoods I x UCKxW
and J XV C R x R* with [0,7] C I and 0 € U and a smooth function h :
J x V — R such that h(g(t,u),u) = t whenever (t,u) € I x U. Hint: Consider
the function G : K x W x R — R given by G(t,w, s) = g(t,w) — s and note that
G(t, w, g(t,w)) = 0 and G(t, w, (¢, w)) # 0. Apply the implicit function theorem
to obtain a function h such that G(h(s,w),w,s) = 0 and h(g(t,w),w) = t. The
implicit function is only locally defined but it is unique. Use the uniqueness to
show that h is defined globally on an appropriate product neighborhood.

8.3.1 Multiple Hopf Bifurcation

The hypothesis in the Hopf bifurcation theorem, which states that a Hopf
point has multiplicity one, raises at least two important questions: How can
we check the sign of the third space-derivative d¢¢e(0,0) of the displacement
function? What happens if ¢¢¢(0,0) = 07 The answers to these questions
will be discussed in this section.

For the second question, let us note that (in the proof of the Hopf bifurca-
tion theorem) the condition dgz¢(0,0) # 0 ensures that the series represen-
tation of the displacement function has a nonzero coefficient at the lowest
possible order. If this condition is not satisfied because d¢ee (0, 0) =0, then
the Hopf point is called multiple and the corresponding Hopf bifurcation is
called a multiple Hopf bifurcation.

Let us consider the multiple Hopf bifurcation for the case of a planar
vector field that depends on a vector of parameters. More precisely, we will
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consider the parameter A in RM and a corresponding family of differential
equations

i=f(u,)), ueR? (8.27)

with the following additional properties: the function f is real analytic; at
the parameter value A = A", the origin u = 0 is a rest point for the differen-
tial equation @ = f(u,A*); and the eigenvalues of the linear transformation
fu(0, A*) are nonzero pure imaginary numbers. Under these assumptions,
the displacement function & is represented by a convergent power series of
the form

6(&,A) = iJj(/\)ﬁj- (8.28)
j=1

Definition 8.29. The rest point at u = 0, for the member of the fam-
ily (8.27) at the parameter value A = A%, is called a weak focus of order k
if k is a positive integer such that

SN = =8k(M) =0, Sk (A) #0.

It is not difficult to show—a special case is proved in the course of the
proof of the Hopf bifurcation theorem—that if 5,(A*) = -+ = Sap_1(X*) =
0, then 2k (A*) = 0. In fact, this is another manifestation of the symmetry
given in display (8.20).

The next theorem is a corollary of the Weierstrass preparation theorem
(Theorem 5.15).

Proposition 8.30. If the family (8.27) has a weak focus of order k at
w = 0 for the parameter value A = M*, then at most k limit cycles appear
in a corresponding multiple Hopf bifurcation. More precisely, there is some
¢> 0 and some v > 0 such that & = f(u, \) has at most k limit cycles in
the open set {u € R? : |u| < v} whenever |A — ¥ < &

While Proposition 8.30 states that at most k limit cycles appear in a
multiple Hopf bifurcation at a weak focus of order k, additional informa-
tion about the set of coefficients {d2;41(A) : 7 = 0,... ,k} is required to
determine precisely how many limit cycles appear. For example, to obtain
the maximum number k of limit cycles, it suffices to have these coeflicients
be independent in the following sense: There is some § > 0 such that for
each j < k and each € > 0, if [Ao — A*| < § and

51(Mo) = 6a(ho) = -+ =02-1(%0) =0, d2i11(R0) #0,
then there is a point A such that |A1 — Ag| < € and

61()\1) = st = 52j;3()\1) = U, 52j_1(A1)52j+1(>\1) < 0.



