204 Z. IVIELIIOUS 1UL DLLLPULY ILLE, 14y LGLLIVEN WY DUstii

manifold? The unstable manifold? What can you conclude about the
dynamics on the center manifold near z = 07

Compare this with the nonHamiltonian case. (Hint: to begin, you
might want to consider the simplest case, n = 2.)

3

Local Bifurcations
2.19 Consider the C” (r > 1) map

z — f(x), z € R" (E2.14) ' : _ ) .
In this chapter we study local bifurcations of vector fields and maps. By
the term “local” we mean bifurcations occurring ih a neighborhood of a
fixed point. The term “bifurcation of a fixed point” will be defined after

Suppose that the map has a fixed point at z = xo, ie.,

zo = f(xo)- we have considered several examples. We begin by studying bifurcations of
; fixed points of vector fields.
“Next consider the vector field
& = f(z) — 2 (F2.15)

3.1 Bifurcation of Fixed Points of Vector Fields
Clearly (E2.15) has a fixed point, and = zo. What can you deter:
mine about the orbit structure near the fixed point of the map (E2.14)
based on knowledge of the orbit structure near the fixed point z = g

of the vector field (E2.15)?
2.20 Consider the C”, map

Consider the parameterized vector field

y=9,2), yeR", AeR? (3.1.1)

where g is a C” function on some open set in R™ x IR”. The degree of
differentiability will be determined by our need to Taylor expand (3.1.1).
Usually C® will be sufficient.

Suppose (3.1.1) has a fixed point at (y, A) = (w0, Ao), i.e.,

i R' - R!
and denote the Taylor expansion of f by

f(@) = ap + a1z + -+ + ap_12” "+ O(Jz|"). 9(yo, Ao) = 0. (3.1.2)

Suppose f is identically zero. Then show that a; =0,i=0,...,7— 1. oo qestions tEmEdEtely axive:
Does the same result hold for the C” map

1. Is the fixed point stable or unstable?
-R™ - R™ n > 17
JiRT = R 2. How is the stability or instability affected as \ is varied?

To answer Question 1, the first step to take is to examine the linear vector
field obtained by linearizing (3.1.1) about the fixed point (¥, A) = (o, Ao).
This linear vector field is given by

£ = Dyg(yo, )€, £€R™ (3.1.3)

If the fixed point is hyperbolic (i.e., none of the eigenvalues of D, g(yg, Ag)
lie on the imaginary axis), we know that the stability of (0, Ao) in (3.1.1)
15 determined by the linear equation (3.1.3) (cf. Section 1.1A). This also
enables us to answer Question 2, because since hyperbolic fixed points are
structurally stable (cf. Section 1.2C), varying A slightly does not change the
nature of the stability of the fixed point. This should be clear intuitively,
but let us belabor the point slightly.
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We know that
9(yo, Xo) =0, (3.1.4)
and that
Dyg(yo, Xo) (3.1.5)

has no eigenvalues on the imaginary axis. Therefore, Dyg(yo, o) i8 in-
vertible. By the implicit function theorem, there thus exists a unigue CT
function, y(A), such that

g(y(A),A) =0 (3.1.6)
for A sufficiently close to Ag with
y¥(Ao) = vo. (3.1.7)

Now, by continuity of the eigenvalues with respect to parameters, for A

sufficiently close to Ag,
Dyg(y(A), A) (3.1.8)

has no eigenvalues on the imaginary axis. Therefore, for A sufficiently close
to Ao, the hyperbolic fixed point (yo, Ao) of (3.1.1) persists and its stability
type remains unchanged. To summarize, in a neighborhood of Ag an isolated
fixed point of (3.1.1) persists and always has the same stability type.

The real fun starts when the fixed point (yo, Ao) of (3.1.1) is not hyper-
bolic, i.e., when Dyg(yo, Xo) has some eigenvalues on the imaginary axis.
In this case, for A very close to Ag (and for y close to o), radically new
dynamical behavior can occur. For example, fixed points can be created or
destroyed and time-dependent behavior such as periodic, quasiperiodic, or
even chaotic dynamics can be created. In a certain sense (to be clarified
later), the more eigenvalues on the imaginary axis, the more exotic the
dynamics will be.

We will begin our study by considering the simplest way in which
Dyg(yo, o) can be nonhyperbolic. This is the case where Dy g(yo, Xo) has
a single zero eigenvalue with the remaining eigenvalues having nonzero real
parts. The question we ask in this situation is what is the nature of this
nonhyperbolic fixed point for A close to Ag? It is under these circumstances
where the real power of the center manifold theory becomes apparent, since
we know that this question can be answered by studying the vector field
(3.1.1) restricted to the assoeiated center manifold (cf. Section 2.1). In this
case the vector field on the center manifold will be a p-parameter family
of one-dimensional vector fields. This represents a vast simplification of

(3.L.1).

3.1A A ZERO EIGENVALUE

Suppose that D,g(yo, Ao) has a single zero eigenvalue with the remaining
eigenvalues having nonzero real parts; then the orbit structure near (yo, Ao)
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is determined by the associated center manifold equation, which we write
as

&= f(z,p), zeR) pelRP, (3.1.9)
where g1 = A — Ag. Furthermore, we know that (3.1.9) must satisfy
. af
5:(0,0)=0. (3.1.11)

Equat.ion (3.1.10) is simply the fixed point condition and (3.1.11) is the
zero e;genvalue condition. We remark that (3.1.9) is C" if (3.1.1) is C". Let
us begin by studying a few specific examples. In these examples we will
assume

p € R

If there are more parameters in the problem (i.e., 4 € R?, p > 1), we
will consider all, except one, as fixed. Later we will consider 1’;101‘6 care%ully
the role played by the number of parameters in the problem. We remark
ais.o that we have not yet precisely defined what we mean by the term
“bifurcation.” We will consider this after the following series of examples.

1) EXAMPLES

ExAMPLE 3.1.1 Consider the vector field

or

&= flz,u)=p-2°, zeR!, peR. (3.1.12)
It is easy to verify that
f(0,0) =0 (3.1.13)
and
of
but in this example we can determine much more. The set of all i i
of (3.1.12) is given by S
p—z>=0
b= x> (3.1.15)

- This represents a parabola in the 4 — 2 plane as shown in Figure 3.1.1. In

the figure the arrows along the vertical lines represent the flow generated by
(3.1.12) along the z-direction. Thus, for p < 0, (3.1.12) has no fixed points
a.nFi the vector field is decreasing in z. For g > 0, (3.1.12) has two ﬁxeé
Pomts. A simple linear stability analysis shows that one of the fixed points
is stable (represented by the solid branch of the parabola), and the other
fixed point is unstable (represented by the broken branch of the parabola).
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X p=x2 1

FIGURE 3.1.1. FIGURE 3.1.2.

exchange of stability has occurred at u = 0. This type of bifurcation is

However, we hope that it is obvious to the reader that, given a C" (r > 1) called a transcritical bifurcation,

vector field on IR! having only two hyperbolic fixed points, one must be
stable and the other unstable.

This is an example of bifurcation. We refer to (z,u) = (0,0) as a bifur-
cation point and the parameter value u =0 as a bifurcation value.

Figure 3.1.1 is referred to as a bifurcation diagram. This particular type
of bifurcation (i.e., where on one side of a parameter value there are no

ExaMPLE 3.1.3 Consider the vector field

t=flz,u)=pr—2°, zeR', pecR. (3.1.21)

It 1s clear that we have

fixed points and on the other side there are two fixed points) is referred to F(0,0) =0, (3.1.22)
as a saddle-node bifurcation. Later on we will worry about seeking precise af
conditions on the vector field on the center manifold that define the saddle- %(0, 0) =0. (3.1.23)

node bifurcation unambiguously. ~ Moreover, the fixed points of (3:1.21) are gives by

ExaMPLE 3.1.2 Consider the vector field z=0 (3.1.24)

:ic———f(:lr,#):pm—:cz, z € R, MERI- (3.1.16) " g

=y (3.1.25)
ant_i are plvotte':d in Figure 3.1.3. Hence, for u < 0, there is one fixed point
z =0, which is stable. For p > 0, z = 0 is still a fixed point, but two nevx;

fixed points have been created at u = 0 and are given by 22 = p. In the

It is easy to verify that ‘
f(0,0)=0 (3.1.17)8

and

81(0.0) _,, ' (3.1.18) process, 7 = 0 has become unstable for 4 > 0, with the other two fixed

Oz . @ points stable. This type of bifurcation is called a pitchfork bifurcation.
Moreover, the fixed points of (3.1.16) are given by
EXAMPLE 3.1.4 Consider the vector field
z=0 (3.1.19) .
:E:f(m,p):pmm:?', QZ'G]R]', 'u,e]R,l_ (3126)
and PO (3.1.20) It is trivial to verify that
£0,0)=0 (3.1.27

and are plotted in Figure 3.1.2. Hence, for s < 0, there are two fixed points; Fod -1.27)
z = 0 is stable and z = p is unstable. These two fixed points coalesce at '" of :
u = 0 and, for p > 0, z = 0 is unstable and & = p is stable. Thus, an E(O’ 0)=0. (3.1.28)
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FIGURE 3.1.4.
ints of (3.1.26) are given by
Moreover, all fixed points o ( ) ; (3.1.29)

p=z

d are shown in Figure 3.1.4. However in this example, despite (3.1.27)
an

and (3.1.28), the dynamics of (3.1.26) are qualitatively the same for >0 =

and p < 0. Namely, (3.1.26) possesses a unique, sta,ble_ fixed point.

i
ii) WHAT Is A “BIFURCATION OF A FIXED POINT"?

i i al. We will begin to learn its

“bifurcation” is extremely general : in R

TI::S :Erglynamical systems by understanding its use in descrﬁn:g Zl}z ;; L
:tsructure near nonhyperbolic fixed points. Let us consider what w

from the previous examples.
In all four examples we had

£(0,0)=0
and Q-J:(O,O) = Os

oz

and yet the orbit structure near # = 0 was different in all four cases, Hence,
knowing that a fixed point has a zero eigenvalue for # = 0 is not sufficient to
determine the orbit structure for \ near zero. Let us consider each example
individually.

1. (Ezample 8.1.1). In this example a unigue curve (or branch) of fixed
points passed through the orgin. Moreover, the curve lay entirely on
one side of 4 = 0 in the y — g plane.

2. (Ezample 3.1.2). In this example two curves of fixed points inter-
sected at the origin in the #—z plane. Both curves existed on either
side of u = 0. However, the stability of the fixed point along a given
curve changed on passing through p = 0.

3. (Ezample 3.1.3). In this example two curves of fixed points inter-
sected at the origin in the y — gz plane. Only one curve (z =10)
existed on both sides of # = 0; however, its stability changed on
passing through u = 0. The other curve of fixed points lay entirely
to one side of 4 = 0 and had a stability type that was the opposite
of z =0 for x> 0.

4. (Ezample 8.1.4). This example had a unique curve of fixed points
passing through the origin in the 4 — z plane and existing on both
sides of 4 = (. Moreover, all fixed points along the curve had the same
stability type. Hence, despite the fact that the fixed point (z, ) =
(0,0) was nonhyperbolic, the orbit structure was qualitatively the
same for all y.

We want to apply the term “bifurcation” to Examples 3.1.1, 3.1.2, and
3.1.3 but not to Example 3.1.4 to describe the change in orbit structure as
# passes through zero. We are therefore led to the following definition.

DEFINITION 3.1.1 A fixed point (z, u) = (0,0) of a one-parameter family
of one-dimensional vector fields is said to undergo a bifurcation at =20
if the flow for 4 near zero and z near zero is not qualitatively the same as
the flow near z = 0 at p=0.

Several remarks are now in order concerning this definition.

Remark 1. The phrase “qualitatively the same” is bit vague. It can be
made precise by substituting the term “CYequivalent” (cf. Section 2.2D),
and this is perfectly adequate for the study of the bifurcation of fixed
points of one-dimensional vector fields. However, we will see that as we
explore higher dimensional phase spaces and global bifurcations, how to
make mathematically precise the statement “two dynamical systems have
qualitatively the same dynamics” becomes more and more ambiguous.

 Remark 2. Practically speaking, a fixed point (%o, uo) of a one-dimensional

vector field is a bifurcation point if either more than one curve of fixed
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points passes through (zg, o) in the p — z plane or if only one curve of
fixed points passes (o, tio) in the p — z plane; then it (locally) lies entirely
on one side of the line p = pg in the u — x plane.

Remark 3. It should be clear from Example 3.1.4 that the condition that a
fixed point is nonhyperbolic is a necessary but not sufficient condition for
bifurcation to occur in one-parameter families of vector fields.

We next turn to deriving general conditions on one-parameter families
of one-dimensional vector fields which exhibit bifurcations exactly as in
Examples 3.1.1, 3.1.2, and 3.1.3.

iii) THE SADDLE-NODE BIFURCATION

We now want to derive conditions under which a general one-parameter
family of one-dimensional vector fields will undergo a saddle-node bifurca-
tion exactly as in Example 3.1.1. These conditions will involve derivatives
of the vector field evaluated at the bifurcation point and are obtained by
a consideration of the geometry of the curve of fixed points in the p — «
plane in a neighborhood of the bifurcation point.

Let us recall Example 3.1.1. In this example a unigue curve of fixed
points, parameterized by z, passed through (u,z) = (0,0). We denote the
curve of fixed points by p(z). The curve of fixed points satisfied two prop-

erties.

1. It was tangent to the line y =0 at z =0, i.e.,

dp o :
E(O) =0. (3.1.30)

2. It lay entirely to one side of 1 = 0. Locally, this will be satisfied if we
have

d*p

dxz?

Now let us consider a general, one-parameter family of one-dimensional

vector fields.

(0) # 0. (3.1.31)

&= f(z,n), zeR', peR. (3.1.32)
Suppose (3.1.32) has a fixed point at (z, 1) = (0,0), i.e.,
f(0,0) =0. (3.1.33)

Furthermore, suppose that the fixed point is not hyperbolic, i.e.,

af B
5(0,0)=0. (3.1.34)
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Now, if we have
of
5(0,0) #0, (3.1.35)
then, by the implicit function theorem, there exists a unique function
p=p(),  p0)=0 (3.1.36)

defined for z sufficiently small such that flz =
,#(z)) = 0. (Note: the reader
should check that (3.1.35) holds in Example 3.1.1.) Now we want to derive

conditions in terms of derivatives of f evaluated at (u,z) = (0 0) so that
we have ’ ’

d
=0 =0, (3.1.37)
dz

ﬁ(OJ # 0. (3.1.38)

Equ?tigixlls (.3;13')?’) a.nEi (3.1.38), along with (3.1.33), (3.1.34), and (3.1 35)
‘mply that (u,z) = (0,0) is a bifurcation point at which + e
eloniiasch point at which a saddle-node

We can derive expressions for (3.1.37) and (3.1.38) in terms of derivatives

of f at the bifurcation point by implici i iati
plicitly differentiat
B o i v ing f along the curve

Using (3.1.35), we have

fz,pu(z)) =0. (3.1.39)
Differentiating (8.1.39) with respect to z gives
& _of of d
& @ HE) =0= 5 (@ ue) + g @ u@) L@, (3.140)
Evaluating (3.1.40) at (4, x) = (0,0), we obtain
of
@(O) _ _%(0)0).
= ———g(o m (3.1.41)
op "’
thus we see that (3.1.34) and (3.1.35) imply that
. d
&E(O) =g, (3.1.42)

Le., the curve of fixed points is tangent to the line yu = 0 at z = (.
Next, let us differentiate (8.1.40) once more with respect to x to obtain
d2f 62f 52
Zr ®:1) = 0= 5o + 20 (o, () B

52 2
+ g (L)

8 2
+ 5L 2) T o) (3.1.43)
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Evaluating (3.1.43) at (g,z) = (0,0) and using (3.1.41) gives

2f af,
s 0.0+ 50,0 55(0) =0

or Y .
fﬂm=:@£&3. (3.1.44)
dx? af (0,0)
ou
Hence, (3.1.44) is nonzero provided we have
0% f
@(0, 0) # 0. (3.1.45)

Let us summarize. In order for (3.1.32) to undergo a saddle-node bifurcation
we must have

0,0)=0
{;( ) nonhyperbolic fixed point (3.1.46)
—(0,0)=0
ox
and
97 (0,0) 0, (3.1.47)
op
o Ff
— ¢ 3.1.48
=5(0,0) #0 (3.1.48)

Equation (3.1.47) implies that a unique curve of ﬁxed'points passes throu'gh
(1, z) = (0,0), and (3.1.48) implies that the curve lies locally on one side

of p = 0. It should be clear that the sign of (3.1.44) determines on which
side of p = 0 the curve lies. In Figure 3.1.5 we show both cases without

indicating stability and leave it as an exercise for the reader to verify the

stability types of the different branches of fixed points emanating from the

bifurcation point (see Exercise 3.2).

Let us end our discussion of the saddle-node bifurcation with the folllow- ;
ing remark. Consider a general one-parameter family of one-dimensional -
vector fields having a nonhyperbolic fixed point at (z,p) = (0,0). The

Taylor expansion of this vector field is given as follows

flz, ) = app + a1z? + agpx + azp® + O(3). (3.1.49)

Our computations show that the dynamics of (3.1.49) near (1, ) = (0,0
are qualitatively the same as one of the following vector fields

&= p+z2. (3.1.50)

Hence, (3.1.50) can be viewed as the normal form for saddle-node bifurca-
tions.
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X
[
(a)
X
m
(b)
FIGURE 3.1.5. a) (~24(0,0)/Z(0,0)) > 0; b) (-2 0,0)/2£(0,0)) <o.

This brings up another important point. In applying the method of nor-
mal forms there is always the question of truncation of the normal form;
namely, how are the dynamics of the normal form including only the O(k)
terms modified when the higher order terms are included? We see that,
in the study of the saddle-node bifurcation, all terms of O(3) and higher
could be neglected and the dynamics would not be qualitatively changed.

The implicit function theorem was the tool that enabled us to verify this
fact.

~ 1v) THE TRANSCRITICAL BIFURCATION

We want to follow the same strategy as in our discussion and derivation
of general conditions for the saddle-node bifurcation given in the previous

-~ section, namely, to use the implicit function theorem to characterize the

geometry of the curves of fixed points passing through the bifurcation point

- in terms of derivatives of the vector field evaluated at the bifurcation point,

For the example of transcritical bifurcation discussed in Example 3.1.2,
the orbit structure near the bifurcation point was characterized as follows.

1. Two curves of fixed points passed through (z, 1) = (0,0), one given
by z = p, the other by = = 0.
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(p,z) = (9, 0) (that is .not given by z = 0). These conditions will be in terms
of derivatives of F which, using (3.1.56), can be expressed as derivatives of

f

2. Both curves of fixed points existed on both sides of y = 0.

3. The stability along each curve of fixed points changed on passing
through s = 0. iy 5
Eomgl =1 Using (3.1.56), it is easy to verify the following

Using these three points as a guide, let us consider a general one-parameter

family of one-dimensional vector fields £(0,0) =0, {3.1.57)
i=f(z,p), =zeR! peR. (3.1.51) oF _&f
We assume that at (z, u) = (0,0), (3.1.51) has a nonhyperbolic fixed point, 92F & f
ie., 222 (0.0) = 55(0,0), (3.1.59)
£(0,0)=0 (3.1.52) _
and (most importantly)
and of
=2.(0,0) = 0. (3.1.53) oF _f

Now, in Example 3.1.2 we had two curves of fixed points passing through

(s, z) = (0,0). In order for this to occur it is necessary to have - Now let us assume that (3.1.60) is not zero; then by the implicit function
of : : Eieorem there exists a function, p(z), defined for sufficiently small, such
5,00 =0 (3.1.54) gt

Pz, p(z)) = 0. (3.1.61)

‘ Cllea,r'ly, ,u(:c) is a curve of fixed points of (3.1.55). In order for u(z) to not
c§1nc:de with 2 = 0 and to exist on both sides of y = 0, we must require
- that

~
or else, by the implicit function theorem, only one curve of fixed points
could pass through the origin.

Equation (3.1.54) presents a problem if we wish to proceed as in the
case of the saddle-node bifurcation; in that situation we used the condition
gﬁ({), 0) # 0 in order to conclude that a unique curve of fixed points, {(z),
passed through the bifurcation point. We then evaluated the vector field
on the curve of fixed points and used implicit differentiation to derive local

characteristics of the geometry of the curve of fixed points based on proper-

0< J%(O) < 0.

-Ix.nplicitly differentiating (3.1.61) exactly as in the case of the saddle-node
bifurcation we obtain
oy —9£(0,0)

ties of the derivatives of the vector field evaluated at the bifurcation point. T BF 0,0 (3.1.62)
However, if we use Example 3.1.2 as a guide, we can extricate ourselves _ Gp\
from this difficulty. | Using (3.1.57), (3.1.58), (3.1.59), and (3.1.60), (3.1.62) becomes
In Example 3.1.2, z = 0 was a curve of fixed points passing through the
bifurcation point. We will require that to be the case for (3.1.51), so that m —%;(U, 0)
(3.1.51) has the form 20 =z (3.1.63)
3z0 (0, 0)
. = 1 1
& = f(z,p) = zF(z,n), zeR, pelR, (3.1.55) We now summarize our results. In order for a vector field
where, by definition, we have ]
¢=fle,p), <eR', peR, (3.1.64)
f(maf-cl T ?é 0 £ -t A . 2
F(z,u) =9 a5% | ok (3.1.56) to undergo a transcritical bifurcation, we must have
(0, ), z=0
Since z = 0 is a curve of fixed points for (3.1.55), in order to obtain an ch)(})’ 0)=0
= ~hid)y E nonhyperbolic fi i
additional curve of fixed points passing through (u,z) = (0,0) we need 5;(0, 0)=0 yperbolic fixed point (3.1.65)

to seek conditions on F whereby F has a curve of zeros passing through
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X v) THE PITCHFORK BIFURCATION

The discussion and derivation of conditions under which a general one-
parameter family of one-dimensional vector fields will undergo a bifurcation
of the type shown in Example 3.1.3 follows very closely our discussion of

H the transcritical bifurcation.
The geometry of the curves of fixed points associated with the bifurcation
in Example 3.1.3 had the following characteristics.
@) L. Two curves of fixed points passed through (u, z) = (0,0), one given
by « = 0, the other by p = 22.
X
2. The curve z = 0 existed on both sides of y = 0; the curve p = 22
existed on one side of u = 0.
3. The fixed points on the curve z = 0 had different stability types on
M opposite sides of 4 = 0. The fixed points on p = z2 all had the same
stability type.
Now we want to consider conditions on a genéré.i one-parameter family
of one-dimensional vector fields having two curves of fixed points passing
(b) ’ through the bifurcation point in the x — z plane that have the properties
o 52 given above.
FIGURE 3.1.6. a) (—%:;‘é(o, 0)/ 36723%(010)) > 0; b) (—‘g—m£(0, 0)/ 6—2_5%(0’0)) <4 We denote the vector field by
&=f(z,u), =zecR!, peR: (3.1.70)
and ;
of _ 3.1.66 and we suppose
200 =0 (314 £(0,0) = 0, (3.1.71)
2 of
% (0,0) #0, (3.1.67) 5g(0:0) =0. (3.1.72)
z
5 g As in the case of the transcritical bifurcation, in order to have more than
_‘g_ﬁ (0,0) # 0. (3.1.68) - one curve of fixed points passing through (i, z) = (0,0) we must have
Tz
We note that the slope of the curve of fixed points not equal to z = 018 EF;E((), 0)=0. (3.1.73)
given by (3.1.63). These two cases are shown in Figure 3.1.6; however, we O
do not indicate stabilities of the different branches of fixed points. We leave Proceeding further along these lines, we require z = 0 to be a curve of fixed
it as an exercise to the reader to verify the stability types c;f(the %ﬁer:ilsl:' points for (3.1.70) by assuming the vector field (3.1.70) has the form
ints emanating from the bifurcation point (see Exer
gu;)ves of fixed poin g _ & = zF(z, ), zeR!, peR! (3.1.74)
“Thus, (3.1.65), (3.1.66), (3.1.67), and (3.1.68) show that the orbit struc- Bere
ture near (z,u) = (0,0) is gualitatively the same as the orbit structure ‘ (o.1) flz,p) z#0 )
_— 0’0 Of F .'E,[J, = { Qiz ! _ }- (3.1.75
near (z,u) = (0,0) 8 smppis 48, (3.1.69) 55 (0, 1), z=0

In order to have a second curve of fixed points passing through (u,z) =

Equation (3.1.69) can be viewed as a normal form for the transeritical {0,0) we must have

bifurcation.

F(0,0)=0 (3.1.76)
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with aF _
300 #0. (3.1.77)

Equation (3.1.77) insures that only one additional curve of fixed points
passes through (u,z) = (0,0). Also, using (3.1.77), the implicit function
theorem implies that for = sufficiently small there exists a unique function
p(z) such that

F(z,u(z)) =0. (3.1.78)

In order for the curve of fixed points, u(x), to satisfy the above-mentioned
characteristics, it is sufficient to have

dp .,
a(@) =0 (3.1.79)

and P2
7’
@(0) #0. (3.1.80)

The conditions for (3.1.79) and (3.1.80) to hold in terms of the derivatives
of F' evaluated at the bifurcation point can be obtained via implicit differ-

entiation of (3.1.78) along the curve of fixed points exactly as in the case

of the saddle-node bifurcation. They are given by

d_”‘( )= —‘3—‘5(0,0) —

=0 3.1.81
dz %—E(0,0) ( ) ;
and s .
d?p ~2£(0,0)
—(0) = 2=F———=#0. 3.1.82

Using (3.1.75), (3.1.81) and (3.1.82) can be expressed in terms of derivatives
of f as follows

;

dp gy — —8+(0.0) _ g
_ o _

dz 24-(0,0)

3
@()_—%(0,0)
- 2
dx? 24(0,0)

‘We summarize as follows. In order for the vector field

#0. (3.1.84)

&= f(z,p), zeR!, peRl (3.1.85)

to undergo a pitchfork bifurcation at (z, u) = (0,0), it is sufficient to have

£(0,0) =0
of _
5,(0,0)=0

(3.1.83)

} nonhyperbolic fixed point (3.1.86)
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X

(a)

(b)

- FIGURE 3.1.7. a) (~24(0,0)/ 24 (0,0)) > 0; b) (—2£(0,0)/ 24 (0,0)) <.

b 9 0,0y =0, (3.1.87)
Op

g—g(o,o) =0, (3.1.88)

323“(0’0) £0, (3.1.89)

Z—Zi;(o,()) £0. (3.1.90)

There are two possibilities for the disposition of the two branches of fixed

- points depending on the sign of (3.1.84). These two possibilities are shown
“in Figure 3.1.7 without indicating stabilities. We leave it as an exercise for
 the reader to verify the stability types for the different branches of fixed

points emanating from the bifurcation point (see Exercise 3.4).
We conclude by noting that (3.1.86), (3.1.87), (3.1.88), (3.1.89), and
(3.1.90) imply that the orbit structure near (z,u) = (0,0} is qualitatively

the same as the orbit structure near (z, ) = (0,0) in the vector field

& = px Fa’. (3.1.91)



