TWO MORE THEOREMS ABOUT DIFFERENTIATION IN BANACH SPACE

S. SCHECTER

Theorem 1. Let X_{1}, \ldots, X_{k}, Y be Banach spaces. For each $i=1, \ldots, k$, let D_{i} be an open subset of X_{i}. Let $f: D_{1} \times \cdots \times D_{k} \rightarrow Y$ be a function. Assume:
(1) At each $\left(x_{1}, \ldots, x_{k}\right) \in D_{1} \times \cdots \times D_{k}$, each partial derivative $D_{i} f\left(x_{1}, \ldots, x_{k}\right)$ exists.
(2) For each i, the mapping from $D_{1} \times \cdots \times D_{k}$ to $L\left(X_{i}, Y\right)$ given by $\left(x_{1}, \ldots, x_{k}\right) \rightarrow$ $D_{i} f\left(x_{1}, \ldots, x_{k}\right)$ is continuous.
Then f is C^{1}, and $D f\left(x_{1}, \ldots, x_{k}\right)\left(h_{1}, \ldots, h_{k}\right)=D_{1} f\left(x_{1}, \ldots, x_{k}\right) h_{1}+\cdots+D_{k} f\left(x_{1}, \ldots, x_{k}\right) h_{k}$.
Proof. We'll do the case $k=2$ only. Differentiability:

$$
\begin{gathered}
f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}, x_{2}\right)-\left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right) \\
=f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}+h_{1}, x_{2}\right)+f\left(x_{1}+h_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right)-\left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right) \\
=\left(\int_{0}^{1} D_{2} f\left(x_{1}+h_{1}, x_{2}+s h_{2}\right)-D_{2} f\left(x_{1}, x_{2}\right) d s\right) h_{2} \\
+\left(\int_{0}^{1} D_{1} f\left(x_{1}+s h_{1}, x_{2}\right)-D_{1} f\left(x_{1}, x_{2}\right) d s\right) h_{1} .
\end{gathered}
$$

Since each $D_{i} f\left(x_{1}, x_{2}\right)$ depends continuously on $\left(x_{1}, x_{2}\right)$, for $\epsilon>0$ we have

$$
\begin{aligned}
& \mid f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}, x_{2}\right)-\left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right) \mid \\
& \leq \sup _{0 \leq s \leq 1}\left|D_{2} f\left(x_{1}+h_{1}, x_{2}+s h_{2}\right)-D_{2} f\left(x_{1}, x_{2}\right)\right|\left|h_{2}\right| \\
&+\sup _{0 \leq s \leq 1}\left|D_{1} f\left(x_{1}+s h_{1}, x_{2}\right)-D_{1} f\left(x_{1}, x_{2}\right)\right|\left|h_{1}\right| \leq \frac{\epsilon}{2}\left|h_{2}\right|+\frac{\epsilon}{2}\left|h_{1}\right| \leq \epsilon\left|\left(h_{1}, h_{2}\right)\right|
\end{aligned}
$$

for $\left|\left(h_{1}, h_{2}\right)\right|$ sufficiently small. This shows that f is differentiable and the derivative is the given formula.
C^{1} :

$$
\begin{aligned}
& \left(D f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-D f\left(x_{1}, x_{2}\right)\right)\left(h_{1}, h_{2}\right) \\
& \quad=\left(D_{1} f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-D_{1} f\left(x_{1}, x_{2}\right)\right) h_{1}+\left(D_{2} f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-D_{2} f\left(x_{1}, x_{2}\right)\right) h_{2}
\end{aligned}
$$

Since each $D_{i} f\left(x_{1}, x_{2}\right)$ depends continuously on $\left(x_{1}, x_{2}\right)$, for $\epsilon>0$ we have

$$
\left|\left(D f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-D f\left(x_{1}, x_{2}\right)\right)\left(h_{1}, h_{2}\right)\right| \leq \frac{\epsilon}{2}\left|h_{1}\right|+\frac{\epsilon}{2}\left|h_{2}\right| \leq \epsilon\left|\left(h_{1}, h_{2}\right)\right|
$$

for $\left|\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-\left(x_{1}, x_{2}\right)\right|$ sufficiently small. Hence for $\left|\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-\left(x_{1}, x_{2}\right)\right|$ sufficiently small, $\left\|D f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-D f\left(x_{1}, x_{2}\right)\right\| \leq \epsilon$.

Theorem 2. Let X_{1}, \ldots, X_{k}, Y be Banach spaces. Let $M: X_{1} \times \cdots \times X_{k} \rightarrow Y$ be a bounded k-multilinear map. Then M is C^{1}, and $D M\left(x_{1}, \ldots, x_{k}\right)\left(h_{1}, \ldots, h_{k}\right)=M\left(h_{1}, x_{2}, \ldots, x_{k}\right)+$ $M\left(x_{1}, h_{2}, x_{3}, \ldots, x_{k}\right)+\cdots+M\left(x_{1}, \ldots, x_{k-1}, h_{k}\right)$.

Proof. The steps are:
(1) If we fix everything but x_{i}, then M is linear in x_{i}. Therefore

$$
D_{i} M\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{k}\right) h_{i}=M\left(x_{1}, \ldots, x_{i-1}, h_{i}, x_{i+1}, \ldots, x_{k}\right)
$$

This is a bounded linear map because

$$
\left|M\left(x_{1}, \ldots, x_{i-1}, h_{i}, x_{i+1}, \ldots, x_{k}\right)\right| \leq\|M\|\left|x_{1}\right| \cdots\left|x_{i-1}\right|\left|h_{i}\right|\left|x_{i+1}\right| \cdots\left|x_{k}\right|
$$

so a bound is $\|M\|\left|x_{1}\right| \cdots\left|x_{i-1}\right|\left|x_{i+1}\right| \cdots\left|x_{k}\right|$.
(2) Now we just need to show that for each i, the map $\left(x_{1}, \ldots, x_{k}\right) \rightarrow D_{i} f\left(x_{1}, \ldots, x_{k}\right)$ is continuous. Then we can apply the previous theorem to get the result.

Let's just look at the case $k=i=3$. We want to show that the $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow$ $D_{3} f\left(x_{1}, x_{2}, x_{3}\right)$ is continuous. The map $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow D_{3} f\left(x_{1}, x_{2}, x_{3}\right)$, from $X_{1} \times$ $X_{2} \times X_{3}$ to $L\left(X_{3}, Y\right)$, takes $\left(x_{1}, x_{2}, x_{3}\right)$ to the linear map $h_{3} \rightarrow M\left(x_{1}, x_{2}, h_{3}\right)$. It is the composition of two maps:
(a) $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$ from $X_{1} \times X_{2} \times X_{3}$ to $X_{1} \times X_{2}$.
(b) $\left(x_{1}, x_{2}\right) \rightarrow$ the linear map $h_{3} \rightarrow M\left(x_{1}, x_{2}, h_{3}\right)$, from $X_{1} \times X_{2}$ to $L\left(X_{3}, Y\right)$.

The first is bounded linear, the second is bounded bilinear. Thus each is continuous, so the composition is continuous.

