TWO THEOREMS ABOUT DIFFERENTIATION IN BANACH SPACE

S. SCHECTER

Theorem 1. Suppose X is a Banach space, $H:[a, b] \rightarrow X$, and $H^{\prime}(t)=0$ for all $t \in[a, b]$.
Then H is constant.
Proof. Let $\epsilon>0$. Let $I_{\epsilon}=\{t \in[a, b]:|H(t)-H(a)| \leq \epsilon(t-a)\}$. We will show that $I_{\epsilon}=[a, b]$. Once this is done, let $t \in(a, b]$. Then for every $\epsilon>0, t \in I_{\epsilon}$. It follows easily that $|H(t)-H(a)|=0$, so $H(t)=H(a)$.

To show that $I_{\epsilon}=[a, b]$, we use the following steps.

1. Since H is differentiable, H is continuous. (An easy-to-prove lemma.) Let $J_{\epsilon}=[a, b] \backslash I_{\epsilon}$. Since H is continuous, J_{ϵ} is open in $[a, b]$. (Easy to show.)
2. Assume J_{ϵ} is nonempty and derive a contradiction. This completes the proof.

To do step 2, assume that J_{ϵ} is nonempty. Let $c=\inf J_{\epsilon}$.
Since J_{ϵ} is open, we cannot have $c=b$. So assume $c<b$.
Notice :
(1) If $c=a$, then $c \in I_{\epsilon}$ (because it is obvious that $a \in I_{\epsilon}$).
(2) If $c>a$, we cannot have $c \in J_{\epsilon}$ because J_{ϵ} is open in $[a, b]$, so $c \in I_{\epsilon}$.

We conclude that $c \in I_{\epsilon}$.
Since $H^{\prime}(c)=0$, there is a number $\delta>0$ such that if $c<t<c+\delta$, then $|H(t)-H(c)|<$ $\epsilon(t-c)$. For such t,

$$
|H(t)-H(a)| \leq|H(t)-H(c)|+|H(c)-H(a)|<\epsilon(t-c)+\epsilon(c-a)=\epsilon(t-a) .
$$

Hence if $c \leq t<c+\delta$, then $c \in I_{\epsilon}$. This contradicts our assumption that $c=\inf J_{\epsilon}$.
Theorem 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1}. Let J be an interval. Define

$$
N: C^{0}\left(J, \mathbb{R}^{n}\right) \rightarrow C^{0}\left(J, \mathbb{R}^{m}\right)
$$

as follows: if $\phi \in C^{0}\left(J, \mathbb{R}^{n}\right)$, then $N(\phi)(t)=(f \circ \phi)(t)$. Then N is C^{1}.
Proof. We use the following steps:
(1) For each $\phi \in C^{0}\left(J, \mathbb{R}^{n}\right)$ define a map $B: C^{0}\left(J, \mathbb{R}^{n}\right) \rightarrow C^{0}\left(J, \mathbb{R}^{m}\right)$ that we believe to be $D N(\phi)$. Since B will depend on ϕ, we denote it $B(\phi)$.
(2) Show that for each $\phi, B(\phi)$ is actually a linear map from $C^{0}\left(J, \mathbb{R}^{n}\right)$ to $C^{0}\left(J, \mathbb{R}^{m}\right)$.
(3) Show that for each $\phi, B(\phi)$ is actually a bounded linear map from $C^{0}\left(J, \mathbb{R}^{n}\right)$ to $C^{0}\left(J, \mathbb{R}^{m}\right)$. Thus $B(\phi) \in L\left(C^{0}\left(J, \mathbb{R}^{n}\right), C^{0}\left(J, \mathbb{R}^{m}\right)\right)$.
(4) Show that $D N(\phi)=B(\phi)$.
(5) Show that the mapping $B: C^{0}\left(J, \mathbb{R}^{n}\right) \rightarrow L\left(C^{0}\left(J, \mathbb{R}^{n}\right), C^{0}\left(J, \mathbb{R}^{m}\right)\right)$ is continuous.

Here are the steps:

1. For $\psi \in C^{0}\left(J, \mathbb{R}^{n}\right)$, we define $B(\phi) \psi$ to be the element of $C^{0}\left(J, \mathbb{R}^{m}\right)$ given by

$$
B(\phi) \psi(t)=D f(\phi(t)) \psi(t)
$$

Date: January 11, 2013.
2. $B(\phi)$ is linear: look at one t at a time, then interpret.

$$
\begin{aligned}
B(\phi)\left(\psi_{1}+\psi_{2}\right)(t)=D f(\phi(t) &)\left(\psi_{1}+\psi_{2}\right)(t)=D f(\phi(t))\left(\psi_{1}(t)+\psi_{2}(t)\right) \\
& =D f(\phi(t)) \psi_{1}(t)+D f(\phi(t)) \psi_{2}(t)=B(\phi) \psi_{1}(t)+B(\phi) \psi_{2}(t) .
\end{aligned}
$$

Therefore $B(\phi)\left(\psi_{1}+\psi_{2}\right)=B(\phi) \psi_{1}+B(\phi) \psi_{2}$. The proof that $B(\phi)(a \psi)=a B(\phi) \psi$ is similar.
3. $B(\phi)$ is bounded linear: look at one t at a time, but some work is needed to get an estimate that works for all $t \in J$.

$$
|B(\phi) \psi(t)|=|D f(\phi(t)) \psi(t)| \leq\|D f(\phi(t))\||\psi(t)| \leq\|D f(\phi(t))\| \mid \psi \| .
$$

Since $\phi \in C^{0}\left(J, \mathbb{R}^{n}\right), \phi$ is a bounded continuous map (this is part of the definition of $C^{0}\left(J, \mathbb{R}^{n}\right)$). Thus $\{\phi(t): t \in J\}$ is a bounded subset of \mathbb{R}^{n}. Since $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is C^{1}, $\|D f(x)\|$ is bounded on any bounded subset of \mathbb{R}^{n}. Therefore there is a number $K>0$ such that $\|D f(\phi(t))\| \leq K$ for all $t \in J$, so

$$
|B(\phi) \psi(t)| \leq K|\psi| .
$$

Now $|B(\phi) \psi|$ is just the sup over $t \in J$ of the left hand side. Since we have the same estimate for every $t,|B(\phi) \psi| \leq K|\psi|$. Since the same K works for any ψ (look at how we chose it), $B(\phi)$ is a bounded linear map.
4. $D N(\phi)=B(\phi)$: start by looking at one t at a time.

$$
\begin{aligned}
(N(\phi+\psi)-N(\phi)-B(\phi) \psi)(t)=f(\phi(t) & +\psi(t))-f(\phi(t))-D f(\phi(t)) \psi(t) \\
& =\int_{0}^{1}(D f(\phi(t)+s \psi(t))-D f(\phi(t))) \psi(t) d s
\end{aligned}
$$

Let E be a compact subset of \mathbb{R}^{n} that includes the closed ball of radius 1 about every point $\phi(t), t \in J$. (There is such a set E because, as you will recall, $\{\phi(t): t \in J\}$ is a bounded subset of \mathbb{R}^{n}.) The map $x \rightarrow D f(x)$ is continuous on E; since E is compact, it is uniformly continuous. Let $\epsilon>0$. Then there exists $\delta>0$ such that if $x_{1}, x_{2} \in E$ and $\left|x_{2}-x_{1}\right|<\delta$, then $\left\|D f\left(x_{2}\right)-D f\left(x_{1}\right)\right\|<\epsilon$. We may assume $\delta<1$. Then if $\psi \in C^{0}\left(J, \mathbb{R}^{n}\right)$ with $|\psi|<\delta$ and $t \in J$, we have $\|D f(\phi(t)+s \psi(t))-D f(\phi(t))\|<\epsilon$. Therefore

$$
\begin{aligned}
|(N(\phi+\psi)-N(\phi)-B(\phi) \psi)(t)|=\left|\int_{0}^{1}(D f(\phi(t)+s \psi(t))-D f(\phi(t))) \psi(t) d s\right| \\
\leq \epsilon|\psi(t)| \leq \epsilon|\psi|
\end{aligned}
$$

Taking the sup over $t \in J$ of the left hand side, we get $|N(\phi+\psi)-N(\phi)-B(\phi) \psi| \leq \epsilon|\psi|$ when $|\psi|<\delta$. Since ϵ was arbitrary, this proves that $D N(\phi)=B(\phi)$.
5. The mapping $B: C^{0}\left(J, \mathbb{R}^{n}\right) \rightarrow L\left(C^{0}\left(J, \mathbb{R}^{n}\right), C^{0}\left(J, \mathbb{R}^{m}\right)\right)$ is continuous: Let $\phi_{1} \in$ $C^{0}\left(J, \mathbb{R}^{n}\right)$. We'll show that B is continuous at ϕ_{1}. Note that

$$
\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi(t)=\left(D f\left(\phi_{2}(t)\right)-D f\left(\phi_{1}(t)\right)\right) \psi(t) .
$$

Let E be a compact subset of \mathbb{R}^{n} that includes the closed ball of radius 1 about every point $\phi_{1}(t), t \in J$. Let $\epsilon>0$. As in step 4, there is a number $\delta, 0<\delta<1$, such that if $x_{1}, x_{2} \in E$ and $\left|x_{2}-x_{1}\right|<\delta$, then $\left\|D f\left(x_{2}\right)-D f\left(x_{1}\right)\right\|<\epsilon$. Then if $\left|\phi_{2}-\phi_{1}\right|<\delta$,

$$
\left|\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi(t)\right| \leq\left\|D f\left(\phi_{2}(t)\right)-D f\left(\phi_{1}(t)\right)\right\||\psi(t)| \leq \epsilon|\psi| .
$$

Taking the sup over $t \in J$ of the left hand side, we get $\left|\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi\right| \leq \epsilon|\psi|$. Therefore $\left\|B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right\| \leq \epsilon$ when $\left|\phi_{2}-\phi_{1}\right|<\delta$. Since ϵ was arbitrary, this shows that B is continuous at ϕ_{1}.

