TWO THEOREMS ABOUT DIFFERENTIATION IN BANACH SPACE

S. SCHECTER

Theorem 1. Suppose X is a Banach space, $H : [a, b] \to X$, and H'(t) = 0 for all $t \in [a, b]$. Then H is constant.

Proof. Let $\epsilon > 0$. Let $I_{\epsilon} = \{t \in [a, b] : |H(t) - H(a)| \le \epsilon(t - a)\}$. We will show that $I_{\epsilon} = [a, b]$. Once this is done, let $t \in (a, b]$. Then for every $\epsilon > 0, t \in I_{\epsilon}$. It follows easily that |H(t) - H(a)| = 0, so H(t) = H(a).

To show that $I_{\epsilon} = [a, b]$, we use the following steps.

1. Since *H* is differentiable, *H* is continuous. (An easy-to-prove lemma.) Let $J_{\epsilon} = [a, b] \setminus I_{\epsilon}$. Since *H* is continuous, J_{ϵ} is open in [a, b]. (Easy to show.)

2. Assume J_{ϵ} is nonempty and derive a contradiction. This completes the proof.

To do step 2, assume that J_{ϵ} is nonempty. Let $c = \inf J_{\epsilon}$.

Since J_{ϵ} is open, we cannot have c = b. So assume c < b. Notice :

(1) If c = a, then $c \in I_{\epsilon}$ (because it is obvious that $a \in I_{\epsilon}$).

(2) If c > a, we cannot have $c \in J_{\epsilon}$ because J_{ϵ} is open in [a, b], so $c \in I_{\epsilon}$.

We conclude that $c \in I_{\epsilon}$.

Since H'(c) = 0, there is a number $\delta > 0$ such that if $c < t < c + \delta$, then $|H(t) - H(c)| < \epsilon(t-c)$. For such t,

$$|H(t) - H(a)| \le |H(t) - H(c)| + |H(c) - H(a)| < \epsilon(t - c) + \epsilon(c - a) = \epsilon(t - a).$$

Hence if $c \leq t < c + \delta$, then $c \in I_{\epsilon}$. This contradicts our assumption that $c = \inf J_{\epsilon}$.

Theorem 2. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be C^1 . Let J be an interval. Define

$$N: C^0(J, \mathbb{R}^n) \to C^0(J, \mathbb{R}^m)$$

as follows: if $\phi \in C^0(J, \mathbb{R}^n)$, then $N(\phi)(t) = (f \circ \phi)(t)$. Then N is C^1 .

Proof. We use the following steps:

- (1) For each $\phi \in C^0(J, \mathbb{R}^n)$ define a map $B : C^0(J, \mathbb{R}^n) \to C^0(J, \mathbb{R}^m)$ that we believe to be $DN(\phi)$. Since B will depend on ϕ , we denote it $B(\phi)$.
- (2) Show that for each ϕ , $B(\phi)$ is actually a linear map from $C^0(J, \mathbb{R}^n)$ to $C^0(J, \mathbb{R}^m)$.
- (3) Show that for each ϕ , $B(\phi)$ is actually a *bounded* linear map from $C^0(J, \mathbb{R}^n)$ to $C^0(J, \mathbb{R}^m)$. Thus $B(\phi) \in L(C^0(J, \mathbb{R}^n), C^0(J, \mathbb{R}^m))$.
- (4) Show that $DN(\phi) = B(\phi)$.

(5) Show that the mapping $B: C^0(J, \mathbb{R}^n) \to L(C^0(J, \mathbb{R}^n), C^0(J, \mathbb{R}^m))$ is continuous.

Here are the steps:

1. For $\psi \in C^0(J, \mathbb{R}^n)$, we define $B(\phi)\psi$ to be the element of $C^0(J, \mathbb{R}^m)$ given by

$$B(\phi)\psi(t) = Df(\phi(t))\psi(t).$$

Date: January 11, 2013.

2. $B(\phi)$ is linear: look at one t at a time, then interpret.

$$B(\phi)(\psi_1 + \psi_2)(t) = Df(\phi(t))(\psi_1 + \psi_2)(t) = Df(\phi(t))(\psi_1(t) + \psi_2(t))$$

= $Df(\phi(t))\psi_1(t) + Df(\phi(t))\psi_2(t) = B(\phi)\psi_1(t) + B(\phi)\psi_2(t).$

Therefore $B(\phi)(\psi_1 + \psi_2) = B(\phi)\psi_1 + B(\phi)\psi_2$. The proof that $B(\phi)(a\psi) = aB(\phi)\psi$ is similar.

3. $B(\phi)$ is bounded linear: look at one t at a time, but some work is needed to get an estimate that works for all $t \in J$.

$$|B(\phi)\psi(t)| = |Df(\phi(t))\psi(t)| \le ||Df(\phi(t))|||\psi(t)| \le ||Df(\phi(t))|||\psi||.$$

Since $\phi \in C^0(J, \mathbb{R}^n)$, ϕ is a *bounded* continuous map (this is part of the definition of $C^0(J, \mathbb{R}^n)$). Thus $\{\phi(t) : t \in J\}$ is a bounded subset of \mathbb{R}^n . Since $f : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 , $\|Df(x)\|$ is bounded on any bounded subset of \mathbb{R}^n . Therefore there is a number K > 0 such that $\|Df(\phi(t))\| \leq K$ for all $t \in J$, so

$$|B(\phi)\psi(t)| \le K|\psi|.$$

Now $|B(\phi)\psi|$ is just the sup over $t \in J$ of the left hand side. Since we have the same estimate for every t, $|B(\phi)\psi| \leq K|\psi|$. Since the same K works for any ψ (look at how we chose it), $B(\phi)$ is a bounded linear map.

4. $DN(\phi) = B(\phi)$: start by looking at one t at a time.

$$(N(\phi + \psi) - N(\phi) - B(\phi)\psi)(t) = f(\phi(t) + \psi(t)) - f(\phi(t)) - Df(\phi(t))\psi(t)$$

= $\int_0^1 (Df(\phi(t) + s\psi(t)) - Df(\phi(t)))\psi(t) ds.$

Let *E* be a compact subset of \mathbb{R}^n that includes the closed ball of radius 1 about every point $\phi(t), t \in J$. (There is such a set *E* because, as you will recall, $\{\phi(t) : t \in J\}$ is a bounded subset of \mathbb{R}^n .) The map $x \to Df(x)$ is continuous on *E*; since *E* is compact, it is uniformly continuous. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that if $x_1, x_2 \in E$ and $|x_2 - x_1| < \delta$, then $\|Df(x_2) - Df(x_1)\| < \epsilon$. We may assume $\delta < 1$. Then if $\psi \in C^0(J, \mathbb{R}^n)$ with $|\psi| < \delta$ and $t \in J$, we have $\|Df(\phi(t) + s\psi(t)) - Df(\phi(t))\| < \epsilon$. Therefore

$$\left| \left(N(\phi + \psi) - N(\phi) - B(\phi)\psi \right)(t) \right| = \left| \int_0^1 \left(Df(\phi(t) + s\psi(t)) - Df(\phi(t)) \right) \psi(t) \, ds \right| \le \epsilon |\psi(t)| \le \epsilon |\psi|.$$

Taking the sup over $t \in J$ of the left hand side, we get $|N(\phi + \psi) - N(\phi) - B(\phi)\psi| \le \epsilon |\psi|$ when $|\psi| < \delta$. Since ϵ was arbitrary, this proves that $DN(\phi) = B(\phi)$.

5. The mapping $B : C^0(J, \mathbb{R}^n) \to L(C^0(J, \mathbb{R}^n), C^0(J, \mathbb{R}^m))$ is continuous: Let $\phi_1 \in C^0(J, \mathbb{R}^n)$. We'll show that B is continuous at ϕ_1 . Note that

$$(B(\phi_2) - B(\phi_1))\psi(t) = \left(Df(\phi_2(t)) - Df(\phi_1(t))\right)\psi(t).$$

Let *E* be a compact subset of \mathbb{R}^n that includes the closed ball of radius 1 about every point $\phi_1(t), t \in J$. Let $\epsilon > 0$. As in step 4, there is a number $\delta, 0 < \delta < 1$, such that if $x_1, x_2 \in E$ and $|x_2 - x_1| < \delta$, then $||Df(x_2) - Df(x_1)|| < \epsilon$. Then if $|\phi_2 - \phi_1| < \delta$,

$$|(B(\phi_2) - B(\phi_1))\psi(t)| \le ||Df(\phi_2(t)) - Df(\phi_1(t))|||\psi(t)| \le \epsilon |\psi|.$$

Taking the sup over $t \in J$ of the left hand side, we get $|(B(\phi_2) - B(\phi_1))\psi| \leq \epsilon |\psi|$. Therefore $||B(\phi_2) - B(\phi_1)|| \leq \epsilon$ when $|\phi_2 - \phi_1| < \delta$. Since ϵ was arbitrary, this shows that B is continuous at ϕ_1 .