MA 732 Homework 3

S. Schecter

February 2, 2009

- 1. Let Y_1, \ldots, Y_k by Banach spaces.
 - (a) Show that $Y_1 \times \ldots \times Y_k$, with the norm $||(y_1, \ldots, y_k)|| = \max_{1 \le i \le k} ||y_i||_i$, is a Banach space. (In other words, show that the "norm" just defined is really a norm, and that $Y_1 \times \ldots \times Y_k$ with this norm is complete.)
 - (b) Define $\Pi_i : Y_1 \times \ldots \times Y_k \to Y_i$ by $\Pi_i(y_1, \ldots, y_k) = y_i$. Show that Π_i is a bounded linear map with norm 1.
 - (c) Let X be another Banach space, and let $f : X \to Y_1 \times \ldots \times Y_k$ be a map, $f(x) = (f_1(x), \ldots, f_k(x))$. Show that f is continuous if and only if each f_i is continuous. (It may simplify things to note that $f_i = \prod_i \circ f$.)
 - (d) Again let X be another Banach space, and let $f: X \to Y_1 \times \ldots \times Y_k$ be a map, $f(x) = (f_1(x), \ldots, f_k(x))$. Assume that each f_i is differentiable at a point $x \in X$. Show that f is differentiable at x, and

$$Df(x)h = (Df_1(x)h, \dots, Df_k(x)h).$$

- 2. Suppose $f : X \to Y$ satisfies (1) f is differentiable at x, and (2) for all x' in some neighborhood of x, $||f(x') f(x)|| \le \lambda ||x' x||$. Show that $||Df(x)|| \le \lambda$.
- 3. Let A(t) be a 3 × 3 matrix depending differentiably on t, and let f(t) and g(t) be 3 × 1 vectors depending differentiably on t. Compute $\frac{d}{dt} (A(t) (f(t) \times g(t)))$ using the generalized product rule. (Here × is cross product.)
- 4. Consider the map $F : C^0([a,b],\mathbb{R}^n) \to \mathbb{R}, F(\phi) = \int_a^b \phi(t) \cdot \phi(t) dt$. Write F as a composition of *three* maps, each of which is linear or bilinear. Then use the chain rule and generalized product rule to compute $DF(\phi)$.