MA 732 Homework 3

S. Schecter

February 2, 2009

1. Let Y_{1}, \ldots, Y_{k} by Banach spaces.
(a) Show that $Y_{1} \times \ldots \times Y_{k}$, with the norm $\left\|\left(y_{1}, \ldots, y_{k}\right)\right\|=\max _{1 \leq i \leq k}\left\|y_{i}\right\|_{i}$, is a Banach space. (In other words, show that the "norm" just defined is really a norm, and that $Y_{1} \times \ldots \times Y_{k}$ with this norm is complete.)
(b) Define $\Pi_{i}: Y_{1} \times \ldots \times Y_{k} \rightarrow Y_{i}$ by $\Pi_{i}\left(y_{1}, \ldots, y_{k}\right)=y_{i}$. Show that Π_{i} is a bounded linear map with norm 1.
(c) Let X be another Banach space, and let $f: X \rightarrow Y_{1} \times \ldots \times Y_{k}$ be a map, $f(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)$. Show that f is continuous if and only if each f_{i} is continuous. (It may simplify things to note that $f_{i}=\Pi_{i} \circ f$.)
(d) Again let X be another Banach space, and let $f: X \rightarrow Y_{1} \times \ldots \times Y_{k}$ be a map, $f(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)$. Assume that each f_{i} is differentiable at a point $x \in X$. Show that f is differentiable at x, and

$$
D f(x) h=\left(D f_{1}(x) h, \ldots, D f_{k}(x) h\right) .
$$

2. Suppose $f: X \rightarrow Y$ satisfies (1) f is differentiable at x, and (2) for all x^{\prime} in some neighborhood of $x,\left\|f\left(x^{\prime}\right)-f(x)\right\| \leq \lambda\left\|x^{\prime}-x\right\|$. Show that $\|D f(x)\| \leq \lambda$.
3. Let $A(t)$ be a 3×3 matrix depending differentiably on t, and let $f(t)$ and $g(t)$ be 3×1 vectors depending differentiably on t. Compute $\frac{d}{d t}(A(t)(f(t) \times g(t)))$ using the generalized product rule. (Here \times is cross product.)
4. Consider the map $F: C^{0}\left([a, b], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}, F(\phi)=\int_{a}^{b} \phi(t) \cdot \phi(t) d t$. Write F as a composition of three maps, each of which is linear or bilinear. Then use the chain rule and generalized product rule to compute $D F(\phi)$.
