MA 732 Homework 10

S. Schecter

April 3, 2009; Corrected April 7, 2009

1. A bead on a rotating hoop satisfies the differential equation

$$
\ddot{x}+\dot{x}+\sin x-\mu \sin 2 x=0 .
$$

Here x is measured in radians from the bottom of the hoop, and the parameter μ is related to the spin rate of the hoop. Letting $y=\dot{x}$, we obtain the system

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-\sin x+\mu \sin 2 x-y .
\end{aligned}
$$

(a) Show that for every $\mu,(x, y)=(0,0)$ is an equilibrium.
(b) Show that the equilibrium at $(x, y)=(0,0)$ is attracting for $\mu<\frac{1}{2}$, has a 0 eigenvalue for $\mu=\frac{1}{2}$, and is not attracting for $\mu>\frac{1}{2}$.
(c) Use center manifold reduction to show that a pitchfork bifurcation occurs at $\mu=\frac{1}{2}$. Suggestions:

- Let $\lambda=\mu-\frac{1}{2}$.
- Let $y=h(x, \lambda)=x\left(A+B x+C \lambda+D x^{2}+\ldots\right)$. No more terms should be needed.
- Recall that $\sin x=x-\frac{x^{3}}{3!}+\ldots$.
(d) Are the new equilibria that appear in the pitchfork bifurcation attracting? (Suggestion: begin by looking at the bifurcation diagram.)

