MA 732 Homework 1

S. Schecter

January 14, 2009, corrected January 21, 2009

1. In class we studied the differential equation

$$
\begin{equation*}
\dot{x}=(a \cos t+b) x-x^{3}, \quad a>0, b>0 . \tag{1}
\end{equation*}
$$

Let $\phi(t, y)$ denote the solution with $\phi(0, y)=y$. We proved that there is a number $y_{0}>0$ such that $\phi\left(2 \pi, y_{0}\right)=y_{0}$. Since $x \equiv 0$ is also a solution and solutions can't cross, $\phi\left(t, y_{0}\right)>0$ for all t. In this problem we will show that $\phi\left(t, y_{0}\right)$ is an attracting periodic solution by showing that $\frac{\partial \phi}{\partial y}\left(2 \pi, y_{0}\right)<1$.
To simplify the notation, let $x(t)=\phi\left(t, y_{0}\right)$ and $z(t)=\frac{\partial \phi}{\partial y}\left(t, y_{0}\right)$. Then $z(t)$ satisfies the linear differential equation

$$
\begin{equation*}
\dot{z}=\left(a \cos t+b-3 x(t)^{2}\right) z, \quad z(0)=1 . \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
z(t)=\exp \left(\int_{0}^{t} a \cos s+b-3 x(s)^{2} d s\right) \tag{3}
\end{equation*}
$$

(a) Use formula (3) to show that $z(2 \pi)=e^{-4 b \pi}<1$.

Hint: From (1),

$$
\begin{equation*}
\frac{\dot{x}(t)}{x(t)}=a \cos t+b-x(t)^{2} \tag{4}
\end{equation*}
$$

Use (4) to substitute for $x(s)^{2}$ in (3).
(b) Could there be two values of $y_{0}>0$ such that $\phi\left(2 \pi, y_{0}\right)=y_{0}$? Explain using the graph of the Poincaré map.
2. Show that the differential equation $\dot{x}=-x^{5}+c(t)$, where $c(t)$ is a 2π-periodic continuous function, has a 2π-periodic solution. Show that any such solution is asymptotically stable. Use the graph of the Poincare map to explain why this implies that there is only one 2π-periodic solution.
3. Suppose that $a(t)$ is 2π-periodic with $0<a(t)<1$ for all t. Show that the differential equation $\dot{x}=x(x-a(t))(1-x)$ has at least three 2π-periodic solutions. Hint: Show that $x(t) \equiv 0$ and $x(t) \equiv 1$ are asymptotically stable 2π-periodic solutions, and use the graph of the Poincaré map to explain why this implies that there is a 2π-periodic solution between them.
4. Variation of constants formula for nonautonomous linear equations. Consider $\dot{x}=$ $A(t) x$ with $x \in \mathbb{R}^{n}$ and $A(t)$ an $n \times n$ matrix that depends continuously on t. Let $\Phi(t)$ be a fundamental matrix solution. Let $h: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be continuous. Show that the solution of $\dot{x}=A(t) x+h(t), x(0)=x_{0}$, is

$$
x(t)=\Phi(t) \Phi^{-1}(0) x_{0}+\int_{0}^{t} \Phi(t) \Phi^{-1}(s) h(s) d s
$$

Suggestion: just check that it works!
5. Fredholm alternative. Suppose that $a(t)$ and $b(t)$ are 2π-periodic continuous functions, and let $a_{0}=\int_{0}^{2 \pi} a(s) d s$. Show the following properties of the differential equation $\dot{x}=a(t) x+b(t)$.
(a) If $a_{0} \neq 0$, then there is a unique 2π-periodic orbit. It is asymptotically stable if $a_{0}<0$, and asymptotically unstable if $a_{0}>0$.
(b) Suppose $a_{0}=0$. Let $c_{0}=\int_{0}^{2 \pi} \exp \left\{\int_{s}^{2 \pi} a(u) d u\right\} b(s) d s$.
i. If $c_{0}=0$, then every solution is 2π-periodic.
ii. If $c_{0} \neq 0$, then every solution is unbounded.

Hint: Show using the variation of constants formula that the Poincare map is

$$
P(\xi)=e^{a_{0}} \xi+\int_{0}^{2 \pi} \exp \left\{\int_{s}^{2 \pi} a(u) d u\right\} b(s) d s
$$

and $P(\xi)=\xi$ if and only if $\left(1-e^{a_{0}}\right) \xi=c_{0}$.
6. Riccati equation. Suppose that $a(t)$ and $b(t)$ are 2π-periodic continuous functions. Prove that the Riccati equation

$$
\dot{x}=b(t)+a(t) x-x^{2}
$$

has at most two 2π-periodic solutions. Hint: Suppose that $\phi(t)$ is a 2π-periodic solution. If $x(t)$ is another solution, let $y(t)=x(t)-\phi(t)$. Show that

$$
\dot{y}=c(t) y-y^{2},
$$

where $c(t)=a(t)-2 \phi(t)$. Then let $w(t)=\frac{1}{y(t)}$. Show that

$$
\dot{w}=-c(t) w+1
$$

Use the Fredholm Alternative to discuss separately the cases $\int_{0}^{2 \pi} c(t) d t \neq 0$ and $\int_{0}^{2 \pi} c(t) d t=0$.

