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1. In class we studied the differential equation

ẋ = (a cos t + b)x − x3, a > 0, b > 0. (1)

Let φ(t, y) denote the solution with φ(0, y) = y. We proved that there is a number
y0 > 0 such that φ(2π, y0) = y0. Since x ≡ 0 is also a solution and solutions can’t
cross, φ(t, y0) > 0 for all t. In this problem we will show that φ(t, y0) is an attracting
periodic solution by showing that ∂φ

∂y
(2π, y0) < 1.

To simplify the notation, let x(t) = φ(t, y0) and z(t) = ∂φ

∂y
(t, y0). Then z(t) satisfies

the linear differential equation

ż =
(

a cos t + b − 3x(t)2
)

z, z(0) = 1. (2)

Therefore

z(t) = exp

(
∫ t

0

a cos s + b − 3x(s)2 ds

)

. (3)

(a) Use formula (3) to show that z(2π) = e−4bπ < 1.

Hint: From (1),
ẋ(t)

x(t)
= a cos t + b − x(t)2. (4)

Use (4) to substitute for x(s)2 in (3).

(b) Could there be two values of y0 > 0 such that φ(2π, y0) = y0? Explain using the
graph of the Poincaré map.

2. Show that the differential equation ẋ = −x5 + c(t), where c(t) is a 2π-periodic continu-
ous function, has a 2π-periodic solution. Show that any such solution is asymptotically
stable. Use the graph of the Poincaré map to explain why this implies that there is
only one 2π-periodic solution.

3. Suppose that a(t) is 2π-periodic with 0 < a(t) < 1 for all t. Show that the differential
equation ẋ = x(x − a(t))(1 − x) has at least three 2π-periodic solutions. Hint: Show
that x(t) ≡ 0 and x(t) ≡ 1 are asymptotically stable 2π-periodic solutions, and use
the graph of the Poincaré map to explain why this implies that there is a 2π-periodic
solution between them.
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4. Variation of constants formula for nonautonomous linear equations. Consider ẋ =
A(t)x with x ∈ R

n and A(t) an n × n matrix that depends continuously on t. Let
Φ(t) be a fundamental matrix solution. Let h : R → R

n be continuous. Show that the
solution of ẋ = A(t)x + h(t), x(0) = x0, is

x(t) = Φ(t)Φ−1(0)x0 +

∫ t

0

Φ(t)Φ−1(s)h(s) ds.

Suggestion: just check that it works!

5. Fredholm alternative. Suppose that a(t) and b(t) are 2π-periodic continuous functions,

and let a0 =
∫ 2π

0
a(s) ds. Show the following properties of the differential equation

ẋ = a(t)x + b(t).

(a) If a0 6= 0, then there is a unique 2π-periodic orbit. It is asymptotically stable if
a0 < 0, and asymptotically unstable if a0 > 0.

(b) Suppose a0 = 0. Let c0 =
∫ 2π

0
exp{

∫ 2π

s
a(u) du} b(s) ds.

i. If c0 = 0, then every solution is 2π-periodic.

ii. If c0 6= 0, then every solution is unbounded.

Hint: Show using the variation of constants formula that the Poincaré map is

P (ξ) = ea0ξ +

∫ 2π

0

exp{

∫ 2π

s

a(u) du} b(s) ds,

and P (ξ) = ξ if and only if (1 − ea0)ξ = c0.

6. Riccati equation. Suppose that a(t) and b(t) are 2π-periodic continuous functions.
Prove that the Riccati equation

ẋ = b(t) + a(t)x − x2

has at most two 2π-periodic solutions. Hint: Suppose that φ(t) is a 2π-periodic solu-
tion. If x(t) is another solution, let y(t) = x(t) − φ(t). Show that

ẏ = c(t)y − y2,

where c(t) = a(t) − 2φ(t). Then let w(t) = 1
y(t)

. Show that

ẇ = −c(t)w + 1

Use the Fredholm Alternative to discuss separately the cases
∫ 2π

0
c(t) dt 6= 0 and

∫ 2π

0
c(t) dt = 0.
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