# TRAPPING REGION FOR LOTKA-VOLTERRA WITH A LOGISTIC MODIFICATION 

S. SCHECTER

Yesterday in class we showed the existence of a triangular trapping region for this equation. However, the argument was incomplete because I wrongly assumed that a certain parabola had to open upward. Here is a better argument, in which the fact that the parabola opens upward is a consequence of other assumptions.

System (sec. 4.3.2 in the text with different letters for the constants):

$$
\begin{aligned}
\dot{x} & =x(1-y-\eta x), \\
\dot{y} & =\gamma y(x-1),
\end{aligned}
$$

with $\eta$ and $\gamma$ positive. We assumed $\eta<1$ in order to have an interior equilibrium, but this is not needed to get a trapping region.

The desired trapping region is the triangle bounded on the left by $x=0$, below by $y=0$ (both these lines are invariant), and above by the line

$$
H(x, y)=\frac{x}{A}+\frac{y}{B}=1, \quad A, B>0 .
$$

For a trapping region we need $\nabla H \cdot(\dot{x}, \dot{y}) \leq 0$ when $H=1$ and $0 \leq x \leq A$. We have

$$
\nabla H \cdot(\dot{x}, \dot{y})=\frac{1}{A} x(1-y-\eta x)+\frac{1}{B} \gamma y(x-1) .
$$

When $H=1, y=B-\frac{B}{A} x$. Substituting this expression into the above formula and simplifying, we find that when $H=1, \nabla H \cdot(\dot{x}, \dot{y})$ is given by

$$
h(x)=\frac{1}{A}\left(\left(\frac{B}{A}-\eta-\gamma\right) x^{2}+(1-B+\gamma A+\gamma) x-A \gamma\right) .
$$

The graph of $z=h(x)$ is a parabola.
For a trapping region we need

$$
\begin{equation*}
h(x) \leq 0 \text { for } 0 \leq x \leq A . \tag{0.1}
\end{equation*}
$$

Notice that
(1) $h(0)=-\gamma<0$, i.e., the $z$-intercept of the parabola $z=h(x)$, is negative.

We claim that if $A$ and $B$ are large enough that

$$
\begin{equation*}
A \geq \frac{1}{\eta} \text { and } B>(\eta+\gamma) A \tag{0.2}
\end{equation*}
$$

then (0.1) is satisfied.
Since $B>(\eta+\gamma) A$,
(2) the coefficient of $x^{2}$ in $h(x)$ is positive, i.e., the parabola $z=h(x)$ opens upward.

In addition,
(3) $h(A)=\frac{1}{A}\left(\left(\frac{B}{A}-\eta-\gamma\right) A^{2}+(1-B+\gamma A+\gamma) A-\gamma A\right)=-\eta A+1 \leq 0$.

The inequality follows from the assumption $A \geq \frac{1}{\eta}$.
Now (1), (2), and (3) imply (0.1).

