MA 532 Test 1

S. Schecter

October 3, 2008

1. Consider the differential equation $\frac{d x}{d t}=(a-x)(b-x)$ with $0<a<b$.
(a) Show that by a change of coordinates of the form $x=m u, t=q s$, with $m>0$ and $q>0$, one can convert this differential equation into the form $\frac{d u}{d s}=(1-u)(c-u)$ with $c>1$. Give formulas for m, q, and c in terms of a and b.
(b) Sketch the phase portrait of $\frac{d x}{d t}=(1-x)(2-x)$. Be sure to show equilibria.
2. Sketch the phase portrait of $\ddot{x}-x-3 x^{2}=0$. Don't forget to show equilibria.
3. Consider the system

$$
\begin{array}{r}
\dot{x}=x(2-x-y), \\
\dot{y}=y(1-x)
\end{array}
$$

Draw the nullclines; show the equilibria; draw representative vectors, including vectors on the nullclines; and draw some typical solution curves. You only need to consider the region $x \geq 0$ and $y \geq 0$.
4. The differential equation $\dot{x}=A x$, with A a 2×2 matrix, has the eigenvalues -1 and -2 . An eigenvector for -1 is $(1,2)$; an eigenvector for -2 is $(2,1)$. Draw the phase portrait.
5. Compute $e^{A t}$ for

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)
$$

You may leave your answer as a product of three matrices. Hint: there is a repeated eigenvalue.

