MA 532 Test 1

S. Schecter

October 3, 2008

- 1. Consider the differential equation $\frac{dx}{dt} = (a x)(b x)$ with 0 < a < b.
 - (a) Show that by a change of coordinates of the form x = mu, t = qs, with m > 0 and q > 0, one can convert this differential equation into the form $\frac{du}{ds} = (1-u)(c-u)$ with c > 1. Give formulas for m, q, and c in terms of a and b.
 - (b) Sketch the phase portrait of $\frac{dx}{dt} = (1-x)(2-x)$. Be sure to show equilibria.
- 2. Sketch the phase portrait of $\ddot{x} x 3x^2 = 0$. Don't forget to show equilibria.
- 3. Consider the system

$$\dot{x} = x(2 - x - y),$$

$$\dot{y} = y(1 - x)$$

Draw the nullclines; show the equilibria; draw representative vectors, including vectors on the nullclines; and draw some typical solution curves. You only need to consider the region $x \ge 0$ and $y \ge 0$.

- 4. The differential equation $\dot{x} = Ax$, with $A = 2 \times 2$ matrix, has the eigenvalues -1 and -2. An eigenvector for -1 is (1, 2); an eigenvector for -2 is (2, 1). Draw the phase portrait.
- 5. Compute e^{At} for

$$A = \left(\begin{array}{rr} 1 & -1 \\ 1 & 3 \end{array}\right).$$

You may leave your answer as a product of three matrices. Hint: there is a repeated eigenvalue.