this system. (b) Draw the phase portrait of the system for ¢ > 0. Note: In this
case, the term ez models viscous damping. (c) What is the fate of the solution
with initial condition (z(0), £(0)) = (4, 0) for ¢ = 0.17 Note: To solve this problem
you will probably have to resort to numerics. How do we know that the result
obtained by a numerical simulation is correct?

Exercise 1.76. [Gradient Systems| If H is a Hamiltonian, then the vector field
grad H is everywhere orthogonal to the corresponding Hamiltonian vector field.
What are the properties of the flow of grad H? More generally, for a smooth

function G : R — R (maybe n is odd), let us define the associated gradient
system

& = grad G(z).

Because a conservative force is the negative gradient of a potential, many authors
define the gradient system with potential G to be & = — grad G(z). The choice of
sign simply determines the direction of the flow. Prove the following statements:
(a) A gradient system has no periodic orbits. (b) If a gradient system has a
rest point, then all of the eigenvalues of its linearization at the rest point are
real. (c) In the plane, the orbits of the gradient system with potential G are
orthogonal trajectories for the orbits of the Hamiltonian system with Hamiltonian
G. (d) If zo € R™ is an isolated maximum of the function G : R® — R, then

Zo is an asymptotically stable rest point of the corresponding gradient system
% = grad G(z).

Exercise 1.77. [Rigid Body Motion] A system that is not Hamiltonian, but
closely related to this class, is given by Euler’s equations for rigid body motion.
The angular momentum M = (My, Mz, M3) of a rigid body, relative to a coordi-
nate frame rotating with the body with axes along the principal axes of the body
and with origin at its center of mass, is related to the angular velocity vector £
by M = AQ, where A is a symmetric matrix called the inertia matriz. Euler’s
equation is M = M x Q. Equivalently, the equation for the angular velocity is
AQ = (AQ) x Q. If A is diagonal with diagonal components (moments of iner-
tia) (I1, Iz, I3), show that Euler’s equations for the components of the angular
momentum are given by

. 1 1

My = *(I—z - Z)MzMaz
: 1

M= (= 1)MiMs,
. 1 1

M3 = (H = ]—‘)Mle

Assume that 0 < I; < I» < I3. Find some invariant manifolds for this system. Can
you use your results to find a qualitative description of the motion? As a physical
example, take this book and hold its covers together with a rubber band. Then,
toss the book vertically three times, imparting a rotation in turn about each of its
axes of symmetry (see Figure 1.13). Are all three rotary motions Lyapunov stable?
Do you observe any other interesting phenomena associated with the motion?
For example, pay attention to the direction of the front cover of the book after
each toss. Hint: Look for invariant quadric surfaces; that is, manifolds defined as

level sets of quadratic polynomials (first integrals) in the variablfes (M1, Ma, M3).
For example, show that the kinetic energy given by 3(AQ,Q) is constant_ along
orbits. The total angular momentum (length of the angular momem.:um) is also
conserved. For a complete mathematical description of rigid body motlo.n, see [12].
For a mathematical description of the observed “twist” in the rotation c.>f the
tossed book, see [20]. Note that Euler’s equations do not des.cribei the motion of
the book in space. To do so would require a functional rela.tlonshlp between i'jhe
coordinate system rotating with the body and the position coordinates relative
to a fixed coordinate frame in space.

1.8.2 Smooth Manifolds

Because the modern definition of a smooth manifold can appear qu.ite
formidable at first sight, we will formulate a simpler equivalent deﬁnitlo_n
for the class of manifolds called the submanifolds of R™. Fortunatelj)_z, this
class is rich enough to contain the manifolds that are met most often in th’e,:
study of differential equations. In fact, every manifold can be “embeddeq
as a submanifold of some Euclidean space. Thus, the class that we will
study can be considered to contain all manifolds.

Recall that a manifold is supposed to be a set that is locally the same as
R*. Thus, whatever is meant by “locally the same,” every open subset of
R* must be a manifold. '

If W C R* is an open set and g : W — R™®~* is a smooth function, then
the graph of g is the subset of R™ defined by

graph(g) = {(w,g(w)) e R*:w e W}

The set graph(g) is the same as W C R* up to a nonlinearv change fjf
coordinates. By this we mean that there is a smooth map G with domain
W and image graph(g) such that G has a smooth inverse. In fa.ct, such a
map G : W — graph(g) is given by G(w) = (w, g(w)). Cl_ea.rly, Gis smooi-;h.
Its inverse is the linear projection on the first k coordinates of the point
(w, g(w)) € graph(g); that is, G~(w, g(w)) = w. Thus, G™' is smooth as
We(l)l'pen subsets and graphs of smooth functions are the prototypical ex-
amples of what we will call submanifolds. But these classes are too re‘strlc-
tive; they include objects that are globally the same as some.Euch‘dean
space. The unit circle T in the plane, also called the Qne—dlmen51onal
torus, is an example of a submanifold that is not of thls.type. Indeed,
T := {(x,y) : z + y% = 1} is not the graph of a scalar fun_ctlon de'ﬁneq on
an open subset of R. On the other hand, every point. of T is contained in a
neighborhood in T that is the graph of such a funct‘zon. In other words, T
is locally the same as R. In fact, each point in T is in one of the four sets

:El < 1}7
ly| < 1}.

Si:={(z,y) R 1y ==/1 -2,
§* = {(z,y) eR? 1z = V117,
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Figure 1.14: A chart for a two-dimensional submanifold in R.

Submanifolds of R™ are subsets with the same basic property: Every point
in the subset is in a neighborhood that is the graph of a smooth function.

To formalize the submanifold concept for subsets of R™, we must deal
with the problem that, in the usual coordinates of R™, not all graphs are
given by sets of the form

{(-’L‘l)--' :$k19k+1(51:~- 3Ik)y"' 19’!’1(3:1:"' ,$k)):
(1,...,z) € W C RF},

Rather, we must allow, as in the example provided by T, for graphs of func-
tions that are not functions of the first k coordinates of R™. To overcome
this technical difficulty we will build permutations of the variables into our
definition.

Definition 1.78. Suppose that § C R™ and =z € S. The pair (W,G)
where W is an open subset of R* for some k < nand G : W — R" is
a smooth function is called a k-dimensional submanifold chart for S at ©
(see Figure 1.14) if there is an open set U C R™ with € U N S such that
UNS = G(W) and one of the following two properties is satisfied:

1) The integer k is equal to n and G is the identity map.

2) The integer k is less than n and G has the form

G(w) = A(ggfu))

where g : W — R™* ¥ is a smooth function and A is a nonsingular n X n
matrix.

Definition 1.79. The set § C R" is called a k-dimensional smooth sub-
manifold of R™ if there is a k-dimensional submanifold chart for S at every
point x in S.
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The map G in a submanifold chart (W, G) is called a submanifold coor-
dinate map. If S is a submanifold of R™, then (even though we have not
vet defined the concept), let us also call a submanifold S of R™ a smooth
manifold.

As an example, let us show that T is a one-dimensional manifold. Con-
sider a point in the subset S* = {(z,y) : ¢ = /1 — ¥2, |y| < 1} of T. Define
the set W := {t € R: |t| < 1}, the function g: W — R by g(t) = v1 -2,
the set U := {(z,y) € R? : (z — 1)2 + y? < 2}, and the matrix

01
=0 1),
Then we have

tv= () e (3)=(2 5) (i) 1e%}

Similarly, T is locally the graph of a smooth function at points in the subsets
S5~ and S4, as required.

A simple but important result about submanifold charts is the following
proposition.

Proposition 1.80. If (W,G) is a submanifold chart for a k-dimensional
submanifold of R™, then the function G : W — G(W) C S is invertible.
Moreover, the inverse of G is the restriction of a smooth function that is
defined on all of R™.

Proof. The result is obvious if k = n. If k < n, then define IT : B™ — R® to

be the linear projection on the first k-coordinates; that is, II(z1,... ,z,) =
(Z1,... ,Zk), and define

F:GW)->W
by

F(s) =IIA™1s.

Clearly, F' is smooth as a function defined on all of R™. Also, if w € W,
then .

FoGlw) = F(A(ggfu))) = HA‘IA(QE:L)) = w.

If s € G(W), then s = A(g(lfu)) for some w € W. Hence, we also have
G(F(s)) = Gw) =s.

This proves that F is the inverse of G. O

If S is a submanifold, then we can use the submanifold charts to define
the open subsets of S.



T smvsvauvwoiw vraimary Uitterential Equations

Definition 1.81. Sy

-l. Suppose that S j ;
S are all possible unions of all is a submanifold. T
submanifold chart for .

he open subsets of
sets of the form G(W) where (W,G) issoa

The ne ition i i
xt proposition is an immediate consequence of the definitions

Proposition 1.82 If§ i
-82. 18 a submanifold of R™ and i 3
of S, then there is an open set U of R™ such thathzj—?I;? ?Jn ‘;}1:3? -?“b::
= ; that is, the

topology defined on S wusin
th ; :
EOIEH fry 5. g the submanifold charts agrees with the subspace

] ntione a. t de I}lllg th.e !IldIlIfOId
A. ment (] bo\t’e, one Of he main reaso
1S f()r ﬁ
C()Ilcepﬁ 18 to dlSilngUlSh thOSG Sul)SetS Of Rn on Wthh wWe can use th?
CBJCUILIS. IO dO SO Iet us fiIS[ Illake p[ eclse the notion ot a s oot 1 X 101
3 1 f m h u Ct ’

Definiti
s I; lll%?%nai.(??; ifllpfpose tha}‘ 51 Is a submanifold of R™, S, is a subman
) atunction F': 57 — 8. We say th is di )
« . . t "
}1;‘5(;1)65 Lf:'éhtftlt}herei.lare submanifold charts (W, Gl})/ ataxlFajlsddZ%img 1;1-553
1 attemapG‘loFG. 2,&2) at
ol e A oGy : Wy = W, is di !
,5'1 tfl) € W1 If F is differentiable at each point of 2amlso "
1, then we say that F is differentiable on 1. pesl UL 7 of
Definiti
. I}l:lgn i&;l 'Supfose thgt S1 and Sy are manifolds. A smooth func
H:5 ‘19 suc121 ltsh called a diffeomorphism if there is a smooth functi a
1 at H(F(s)) = s for every s ¢ S1 and F(H(s)) = s f(;r;

every s € S5, i i
e 2. The function H is called the inverse of F and is denoted by

With respect to the notation in Defi
concept of differentiability for the functio
deﬁ'ned. what we mean by its derivative
derivative relative to the submanifold cil
the local representative of the function F
deﬁn.ed on an open subset of a Euclid
Euclidean space. By definition; the loc
of F relative to the given submanifold
Euclidean space of this local representat
we will interpret the derivative of F' w
sub.manifold chart; that is, we will give
derivative of F' (see also Exercise 1.85).

nition 1.83, we have defined the
nF: 8 — Sy, but we have not yet
We have, however, determined the
zftrts used in the definition. Indeed

1s given by GQ_IOFoGl , & function’
€an space with range in another
al representative of the derivative
f:lla,rts is the usual derivative in
ive of F'. In the next subsection

ithout regard to the choice of ai
a coordinate-free definition of the

EXGIC!SB 1-85. ] rove: ‘he d [fme t abl ty Uf a.fll ct on d :!i 1 d o1l a mani ()ld
1 1 nti 11 1cti € e f

does not depend on the choice of submanifold chart

Exercise 1.8 ,
6. (a) Show that § = J(6) can be viewed as a (smooth) differential

Equatlon on the un circ \j f p D
10 ]e lf alld onl lf e di 1o € com atlble Wltll
1S riodic, b
( £ ) n 1
the uSUal an Ula}: COOIdHlate O the C]ICle 1t 1s convenient to CO!ISlde Dn[y 211

periodic functi i
ons (see Section 1.8.5). (b) Describe the bifurcations that occur

1.8 Manifolds 47

for the family §=1- Asin@ with A > 0. (¢) For each A < 1, the corresponding
differential equation has a periodic orbit. Determine the period of this periodic
orbit and describe the behavior of the period as A — 1 (see [218, p. 98)).

We have used the phrase “smooth function” to refer to a function that is
continuously differentiable. In view of Definition 1.83, the smoothness of a
function defined on a manifold is determined by the smoothness of its local
representatives—functions that are defined on open subsets of Euclidean
spaces. It is clear that smoothness of all desired orders can be defined in
the same manner by imposing the requirement on local representatives.
More precisely, if F° is a function defined on a manifold S, then we will
say that F' is an element of C7(S), for r a nonnegative integer, r = 00,
or 7 = w, provided that at each point of S there is a local representative
of F all of whose partial derivatives up to and including those of order r
are continuous. If r = oo, then all partial derivatives are required to be
continuous. If r = w, then all local representatives are all required to have
convergent power series representations valid in a neighborhood of each
point of their domains. A function in C¥ is called real analytic.

In the subject of differential equations, specifying the minimum number
of derivatives of a function required to obtain a result often obscures the
main ideas that are being illustrated. Thus, as a convenient informality, we
will often use the phrase “smooth function” to mean that the function in
question has as many continuous derivatives as needed. In cases where the
exact requirement for the number of derivatives is essential, we will refer
to the appropriate class of C” functions.

The next definition formalizes the concept of a coordinate system.

Definition 1.87. Suppose that S is a k-dimensional submanifold. The pair
(V. ¥) is called a coordinate system or coordinate chart on S if V' is an open
subset of §, W is an open subset of Rk, and ¥ : V — W is a diffeomorphism.

Exercise 1.88. Prove: If (W,G) is a submanifold chart for a manifold S, then
(G(W),G™') is a coordinate chart on S.

The abstract definition of a manifold is based on the concept of coordi-
nate charts. Informally, a set S together with a collection of subsets S is
defined to be a k-dimensional manifold if every point of 5 is contained in at
least one set in S and if, for each member V' of S, there is a corresponding
open subset W of R¥ and a function ¥ : V' — W that is bijective. If two
such subsets V3 and Vs overlap, then the domain of the map

@10@51;\32(VLDL’2)—>W1

is an open subset of R* whose range is contained in an open subset of
R* The set S is called a manifold provided that all such “overlap maps”
are smooth (see [120] for the formal definition). This abstract notion of a
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manifold has the advantage that it does not require a manifold to be a
subset of a Euclidean space.

Exercise 1.89. Prove: If F: R™ — R" is smooth and F(S;) C 5, for subman-
ifolds S1 and S2, then the restriction of F' to S is differentiable.

Exercise 1.90. Prove: If a € R, then the map T — T given by
(z,y) v (zcosa — ysina, zsina + ycos o)

is a diffeomorphism.

Now that we know the definition of a manifold, we are ready to prove

that linear subspaces of R™ and regular level sets of smooth functions are
manifolds. '

Proposition 1.91. A linear subspace of R™ is a submanifold.

Proof. Let us suppose that S is the span of the k linearly independent vec-

t?r]i{ :1, ..., vt in R™. We will show that S is a k-dimensional submanifold
0 ’
Let ey, ... ,e, denote the standard basis of R™. By a basic result from

linear algebra, there is a set consisting of n — k standard basis vectors
Sk+1,- -+ » fn such that the vectors

LS PRI :Un’i:afk+1!"' :fn

are a basis for R™. (Why?) Let us denote the remaining set of standard
basis vectors by fiy..., Jg. For each j =1,... ,k, there are scalars Af and
7 such that

k n
szz)\fer Z w fi-
i=1 i=k41
Hence, if (ty,... ,tx) € R¥, then the vector
k k n k k
Sotafi =2t Do wlf) = Dot (D0 Mw)
j=1 =1 i=k+1 =1 i=1

is in S; and, relative to the basis fi, -, fn, the vector

k k
(t]_,... ,tk,—th,u,{c_{_l,... ,—th,ufl)
=1 =1

isin S.

1.% vlanlrous 4y

Define g : RF — R* % by

k k
R (-th,u{m,... ,-thﬂg;)
j=1 j=1

and let A denote the permutation matrix given by Ae; = f;. It follows that
the pair (R, G), where G : RF — R™ is defined by

Gl = A(QE‘;})),

is a k-dimensional submanifold chart such that G(RF) = R*n S. In fact,
by the construction, it is clear that the image of G is a linear subspace of
S. Moreover, because the image of G has dimension k as a vector space,
the subspace G(R¥) is equal to S. i

As mentioned previously, linear subspaces often arise as invariant mani-
folds of differential equations. For example, consider the differential equa-
tion given by © = Az where z € R" and A is an n x n matrix. If 5 is
an invariant subspace for the matrix A, for example, one of its generalized
eigenspaces, then, by Proposition 1.91, S is a submanifold of R™. Also, §
is an invariant set for the corresponding linear system of differential equa-
tions. Although a complete proof of this proposition requires some results
from linear systems theory that will be presented in Chapter 2, the essen-
tial features of the proof are simply illustrated in the special case where
the linear transformation A restricted to S has a complete set of eigenvec-
tors. In other words, S is a k-dimensional subspace of R™ spanned by k
linearly independent eigenvectors vy, ... ,Vk of A. Under this assumption,
if Av; = \;v;, then t — eMity; is a solution of & = Ax. Also, note that e*itv;
is an eigenvector of A for each ¢ € R. Therefore, if zo € S, then there are
scalars (aj, ... ,ak) such that zo = Z:;l a;v; and

k
t— E eitav;
it

is the solution of the ordinary differential equation with initial condition
1(0) = zg. Clearly, the corresponding orbit stays in S for all £ € R.

Linear subspaces can be invariant sets for nonlinear differential equations.
For example, consider the Volterra-Lotka system

i=z(a-by), U=ylcz-d).

In case a, b, ¢, and d are all positive, this system models the interaction
of the population y of a predator and the population z of its prey. For
this system, the z-axis and the y-axis are each invariant sets. Indeed, sup-
pose that (0,yo) is a point on the y-axis corresponding to a population of
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predators with no prey, then # — (0,e7%yq) is the solution of the system
starting at this point that models this population for all future time. This
solution stays on the y-axis for all time, and, as there are is no spontaneous
generation of prey, the predator population dies out in positive time.

Let us now discuss level sets of functions. Recall that the level set with
energy c of a smooth function H : R® — R is the set

Se:={z€R": H(zx) = c)}.

Moreover, the level set S, is called a regular level set if grad H(z) # 0 for
each z € S,.

Proposition 1.92. If H:R"® - R is a smooth function, then each of its
reqular level sets is an (n — 1)-dimensional submanifold of R™.

It is instructive to outline a proof of this result because it provides our
first application of a nontrivial and very important theorem from advanced
calculus, namely, the implicit function theorem.

Suppose that S, is a regular level set of H, choose a € 5S¢, and define
F:R®™ - R by

F(z) = H(z) —.

Let us note that F'(a) = 0. Also, because grad H(a) # 0, there is at least one
integer 1 < i < n such that the corresponding partial derivative dF/dz;
does not vanish when evaluated at a. For notational convenience let us
suppose that ¢ = 1. All other cases can be proved in a similar manner.

We are in a typical situation: We have a function F : R x R*~1 4 R
given by (r1,za,... ,2,) — F(zy,...,z,;) such that

oF

F(al,...,an)=0, ;9?1-((11,0,2,...

yQn) # 0.

This calls for an application of the implicit function theorem. A preliminary
version of the theorem is stated here; a more general version will be proved
later (see Theorem 1.259).

If f: R* x R™ — R™ s given by (p,q) = f(p,q), then, for fixed b € R™,
consider the function R¢ — R™ defined by p — f(p,b). Its derivative at
a € R¢ will be denoted by fp(a,b). Of course, with respect to the usual
bases of R® and R™, this derivative is represented by an n x ¢ matrix of
partial derivatives.

Theorem 1.93 (Implicit Function Theorem). Suppose that F : R™ x
R¥ — R™ is a smooth function given by (p,q) — F(p,q). If (a,b) is in
R™ x R* such that Fla,b) = 0 and the linear transformation F,(a,b) :
R™ — R™ is invertible, then there exist two open metric balls U C R™ aqnd
V C R* with (a,b) e UxV together with a smooth function g : V — U such
that g(b) = a and F(g(v),v) = 0 for eachv € V. Moreover, if (u,v) € UxV
and F(u,v) = 0, then u = g(v).
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Continuing with our outline of the proof of Proposition 1.92, let us ob-
serve that, by an application of the implicit function theorem tc1) F, tht.ere
Is an open set Z C R with a; € Z, an open set W C R"™! contain-
ing the point (as,...,a,), and a smooth function g : W — Z such that

g(ag,... ,an) = aj and
Hg(za,...  ¢n)iTay... ,Zn) —c=0.
The set |
U:=={(z1,-...zn) ER®: 21 € Z and (z2,... ,Z,) EW}=Zx W

isiopen. Moreover, if = (21,... ,2,) € S. NU, then z1 = g(x3,... ,2n).

Thus, we have that
S.NU ={(g(zs,...
—{ueR"°u:A( o )forsomeweW}
B ' g(w)

s s B 4 ¢ v (@ e 3B € W)

where A is the permutation of R™ given by

(Y1s- 5 Un) = (Un, Y1, s Yn—1)-

In particular, it follows that S, is an (n — 1)-dimensional manifold.

n 2o
Exercise 1.94. Show that §" 7! := {(z1,... ,2n) €ER™ : 11> + .- + 2,2 = 1}

1s an (n — 1)-dimensional manifold.

Exercise 1.95. For p € S* and p # e (the north and south poles) define
f(p) = v where (v,p) =0, (v,es) = 1— 2%, and (px e3,v) = 0. Define f(+ez) =0
Prove that f is a smooth function f:$% — R¥,

Exercise 1.96. Show that the surface of revolution S obtained by rota.iting
the circle given by (z — 2)® + ¢ = 1 around the y-axis is a two—diénensmnal
manifold. This manifold is diffeomorphic to a (two-dimensional) torus T := TxT.
Construct a diffeomorphism.

Exercise 1.97. Suppose that J is an interval in R and v : J — R™ i§ a smlooth
function. The image C of v is, by definition, a curve in R™. IsC a one—d1mens_1(_)nal
submanifold of R™? Formulate and prove a theorem that gives sufficient conditions
for C to be a submanifold. Hint: Consider the function ¢ — (¢2,t%) for ¢ € R and
the function ¢ — (1 —#% ¢ —t3) for two different domains: t € R ?‘md t € (—oo,1).
Can you imagine a situation where the image of a smooth curve is a c‘iens? subset
of a manifold with dimension n > 1?7 Hint: Consider curves mapping into the
two-dimensional torus.

Exercise 1.98. Show that the closed unit disk in R? is not a manifold. Actually,
it is a manifold with boundary. How should this concept be formalized?

Exercise 1.99. Prove that for ¢ > 0 there is a § > 0 and a root r of the
polynomial ° — az + b such that [r| < e whenever |a — 1| + [b] < 4.
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Exercise 1.100. Show that if f: R® > R", Aisa nonsingular (n x n)-matrix
and || is sufficiently small, then the differential equation & = Az + ef(z) has a
rest point.

1.8.83 Tangent Spaces

We have used, informally, the following proposition: If S is a manifold in
R™, and (z, f(x)) is tangent to S for each z € S, then S is an invariant
manifold for the differential equation & = f(x). To make this proposition
precise, we will give a definition of the concept of a tangent vector on a
manifold. This definition is the main topic of this section.

Let us begin by considering some examples where the proposition on
tangents and invariant manifolds can be applied.

The vector field on R? associated with the system of differential equations
given by

T =z(y + z),

y=—y*+zcosz,

=2z +z—siny (1.18)
is “tangent” to the linear two-dimensional submanifold § := {{z,y,2) :

x = 0} in the following sense: If (a,b,¢) € S, then the value of the vector
function

(z,y,2) = (z(y + 2),y* + zcos 2,22 + 2 — siny)

at (a,b,c¢) is a vector in the linear space S. Note that the vector assigned
by the vector field depends on the point in S. For this reason, we will view
the vector field as the function

(maya Z) = (w,y,z,w(y +’Z), ng +Tcosz,2r+z— Slﬂ‘y)

where the first three component functions specify the base pownt, and the
last three components, called the principal part, specify the vector that is
assigned at the base point.

To see that S is an invariant set, choose (0,b,¢) € S and consider the
initial value problem

9§ = —y2, z=2z—siny, y(0)=b, z(0)=c
Note that if its solution is given by ¢ ~ (y(t), z(¢)), then the function
t — (0,y(t),2(t)) is the solution of system (1.18) starting at the point
(0,b, ¢). In particular, the orbit corresponding to this solution is contained
in S. Hence, S is an invariant set. In this example, the solution is not
defined for all ¢ € (—00,00). (Why?) But, every solution that starts in S
stays in 5, as required by Definition 1.66.
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The following system of differential equations,

d=x% = (23 +9° + )z,
v=1"-(®+4° + 2Py,
=2 — (23 + 93 + 23z (1.19)

has a nonlinear invariant submanifold; namely, the unit sphere
§?:= {(z,y,2) e R®: 22 + y% + 22 = 1}.

This fact follows from our proposition, provided that the vector field asso-
ciated with the differential equation is everywhere tangent to the sphere.
To prove this requirement, recall from Euclidean geometry that a vector
in space is defined to be tangent to the sphere if it is orthogonal to the
normal line passing through the base point of the vector. Moreover, the
normal lines to the sphere are generated by the outer unit normal field
given by the restriction of the vector field

nz,y,2) = (2,9, 22,9, 2)

to §%. By a simple computation, it is easy to check that the vector field
associated with the differential equation is everywhere orthogonal to 1 on
S?; that is, at each base point on §? the corresponding principal parts of
the two vector fields are orthogonal, as required.

We will give a definition for tangent vectors on a manifold that generalizes
the definition given in Euclidean geometry for linear subspaces and spheres.
Let us suppose that S is a k-dimensional submanifold of R™ and (G, W)
is a submanifold coordinate chart at p € S. Our objective is to define the
tangent space to S at p.

Definition 1.101. The tangent space to R¥ with base point at w € R* is
the set

TuR* := {w} x R*.

We have the following obvious proposition: If w € R¥, then the tangent
space T, R¥, with addition defined by

(w?f) + (wa C) = (w1 g g)
and scalar multiplication defined by
a(w,§) := (w,af),

is a vector space that is isomorphic to the vector space R¥.
To define the tangent space of the submanifold S at p € S, denoted
T,S, we simply move the space T,,R¥, for an appropriate choice of w, to S
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with a submanifold coordinate map. More precisely, suppose that (W, G)
is a submanifold chart at p. By Proposition 1.80, the coordinate map G is
invertible. If ¢ = G~!(p), then define

TpS == {p} x {v € R™ : v = DG(g)¢, € € R¥}. (1.20)
Note that the set
Vi={veR":v=DG(g), £ € R*}

is a k-dimensional subspace of R™. If £ = n, then DG(q) is the identity
map. If k < n, then DG(g) = AB where A is a nonsingular matrix and the

n x k block matrix
I
B .=
( Dg(q) )

is partitioned by rows with I the k x k identity matrix and g a map from
W to R* . Thus, we see that V is just the image of a linear map from R*
to R™ whose rank is k.

Proposition 1.102. If S is a manifold and p € S, then the vector space
1,5 is well-defined.

Proof. If K is a second submanifold coordinate map at p, say K : Z — §
with K(r) = p, then we must show that the tangent space defined using
K agrees with the tangent space defined using G. To prove this fact, let us
suppose that (p,v) € T,,S is given by

v = DG(g)¢.

Using the chain rule, it follows that

d

v = EG_(Q +t£) i
In other words, v is the directional derivative of G at ¢ in the direction &.
To compute this derivative, we simply choose a curve, here t ++ g +t£, that
passes through g with tangent vector £ at time ¢ = 0, move this curve to
the manifold by composing it with the function G, and then compute the
tangent to the image curve at time ¢ = 0.

The curve t — K~(G(g +t£)) is in Z (at least this is true for |¢| suffi-
ciently small). Thus, we have a vector o € R¥ given by

d
o= 2K Glg+t)| -

We claim that DK (r)a = v. In fact, we have

K~ G(a)) = K Hp) =,
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and

DK(r)a= %K(K‘I(G(q + tﬁ))){

t=0

= £G(a+19)

—i ] 22

In particular, TS, as originally defined, is a subset of the “tangent space
at p defined by K.” But this means that this subset, which is itself a k-
dimensional affine subspace (the translate of a subspace) of R, must be
equal to T}, S, as required. O

Exercise 1.103. Prove: If p € §?, then the tangent space 7,S?, as in Defini-
tion 1.20, is equal to

{p} x {ve R®: (p,v) = 0}.

Definition 1.104. The tangent bundle T'S of a manifold S is the union
of its tangent spaces; that is, T'S := UpES T,S. Also, for each p € S, the
vector space 1,5 is called the fiber of the tangent bundle over the base
point p.

Definition 1.105. Suppose that S; and S, are manifolds, and F : S; —
S5 is a smooth function. The derivative, also called the tangent map, of F is
the function F, : T'S; — T'S, defined as follows: For each (p,v) € T, 51, let
(W1, G1) be a submanifold chart at p in 51, (W3, G2) a submanifold chart at
F(p) in Sz, (GT(p), £) the vector in Tcl—l(p)Wl such that DG1(G7(p))¢ =

v, and (G5 (F(p)), () the vector in Tg-1 p, W2 such that
¢ = D(G3' o F o G1)(GT (p))é-
The tangent vector Fi(p,v) in Tr(p)Sz is defined by

F.(p,v) = (F(p), DG2(G3  (F(p)))C)-

Although definition 1.105 seems to be rather complex, the idea is nat-
ural: we simply use the local representatives of the function F' and the
definition of the tangent bundle to define the derivative F, as a map with
two component functions. The first component is F' (to ensure that base
points map to base points) and the second component is defined by the
derivative of a local representative of F' at each base point.

The following proposition is obvious from the definitions.
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Proposition 1.106. The tangent map is well-defined and it is linear on
each fiber of the tangent bundle.

The derivative, or tangent map, of a function defined on a manifold has
a geometric interpretation that is the key to understanding its applications
in the study of differential equations. We have already discussed this in-
terpretation several times for various special cases. But, because it is so
important, let us consider the geometric interpretation of the derivative in
the context of the notation introduced in Definition 1.105. If £ s ~(t) is a
curve—a smooth function defined on an open set of R—with image in the
submanifold S; € R™ such that v(0) = p, and if

d

v =4(0) = Z(t)

then { — F(y(t)) is a curve in the submanifold S» C R™ such that
F(+(0)) = F(p) and

t=0,

F.(pv) = (F(p), SFO0)| ).

=0
We simply find a curve that is tangent to the vector v at p and move the
curve to the image of the function F' to obtain a curve in the range. The
tangent vector to the new curve at F(p) is the image of the tangent map.

Proposition 1.107. A submanifold S of R™ is an invariant manifold for
the ordinary differential equation & = f(x), z € R™ if and only if

(z,f(z)) € TS

for each x € S. If, in addition, S is compact, then each orbit on S is defined
Jor allt e R.

Proof. Suppose that .S is k-dimensional, p € S, and (W, @) is a subman-
ifold chart for § at p. The idea of the proof is to change coordinates to
obtain an ordinary differential equation on W.

Recall that the submanifold coordinate map G is invertible and G—! is
the restriction of a linear map defined on R™. In particular, we have that
w = G~YG(w)) for w € W. If we differentiate both sides of this equation
and use the chain rule, then we obtain the relation

I = DG~V (G(w)) DG (w) (1.21)

where I denotes the identity transformation of R™. In particular, for each
w € W, we have that DG~!(G(w)) is the inverse of the linear transforma-
tion DG(w).

Under the hypothesis, we have that (z, f(z)) € T, S for each z € S.
Hence, the vector f(G(w)) is in the image of DG(w) for each w € W.
Thus, it follows that

(w, DG™HG(w))F(G(w))) € TR,

e

T —
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and, as a result, the map
w = (w, DG™HG(w)) f(G(w)))

defines a vector field on W C R™. The associated differential equation on
W is given by

W = DG™H(G(w)) F(G(w)). (1.22)

Suppose that G(g) = p, and consider the initial value problem on W
given by the differential equation (1.22) together with the initial condition
w(0) = ¢. By the existence theorem, this initial value problem has a unique
solution ¢ ~ w(t) that is defined on an open interval containing ¢ = 0.

Define ¢(t) = G(w(t)). We have that ¢(0) = p and, using equation (1.21),
that

2 (1) = DG(w(E))o(t)

dt
= DG(w(t)) - DGTHC(Ww(t) f(G(w(1)))
= f(¢(t).

Thus, t — ¢(t) is the solution of & = f(z) starting at p. Moreover, this
solution is in S because ¢(t) = G(w(t)). The solution remains in S as long
as it is defined within the submanifold chart. The same result is true for
every submanifold chart. Thus, the solution remains in S as long as it is
defined.

Suppose that S is compact and note that the solution just defined is
a solution of the differential equation £ = f(z) defined on R™. By the
extension theorem, if a solution of £ = f(x) does not exist for all time,
for example, if it exists only for 0 < ¢t < 8 < oo, then it approaches the
boundary of the domain of definition of f or it blows up to infinity as
t approaches 3. As long as the solution stays in S, both possibilities are
excluded if S is compact. Since the manifold S is covered by coordinate
charts, the solution stays in S and it is defined for all time.

If S is invariant, p € S and t — ~(t) is the solution of # = f(z) with
¥(0) = p, then the curve ¢ = G~!(y(t)) in R* has a tangent vector £ at
t =0 given by

-
=G (), o
As before, it is easy to see that DG(q)€ = f(p). Thus, (p, f(p)) € T,S, as
required. O

Exercise 1.108. Show that the function f(8) = 1 — Asin# defines a (smooth)
vector field on T!, but f(#) = # — Asin 8 does not.
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Figure 1.15: The left panel depicts a heteroclinic saddle connection and a
locally supported perturbation. The right panel depicts the phase portrait
of the perturbed vector field.

Exercise 1.109. State and prove a proposition that is analogous to Proposi-
tion 1.107 for the case where the submanifold S is not compact.

Exercise 1.110. We have mentioned several times the interpretation of the
derivative of a function whereby a curve tangent to a given vector at a point is
moved by the function to obtain a new curve whose tangent vector is the direc-
tional derivative of the function applied to the original vector. This interpretation
can also be used to define the tangent space at a point on a manifold. In fact, let
us say that two curves ¢ — ~(t) and ¢ — v(t), with image in the same manifold
S, are equivalent if 4(0) = »(0) and §(0) = £(0). Prove that this is an equiv-
alence relation. A tangent vector at p € S is defined to an equivalence class of
curves all with value p at ¢ = 0. As a convenient notation, let us write [] for the
equivalence class containing the curve . The tangent space at p in S is defined
to be the set of all equivalence classes of curves that have value p at ¢ = 0. Prove
that the tangent space at p defined in this manner can be given the structure of
a vector space and this vector space has the same dimension as the manifold S.
Also prove that this definition gives the same tangent space as defined in equa-
tion 1.20. Finally, for manifolds S; and S; and a function F : §; — S», prove
that the tangent map F. is given by F.[y] = [F o 7).

Exercise 1.111. Let A be an invertible symmetric (n x n)-matrix. (a) Prove
that the set M := {z € R* : (Az,z) = 1} is a submanifold of R™. (b) Suppose
that zo € M. Describe the tangent space to M at z¢. Hint: Apply Exercise 1.110.

Exercise 1.112. [General Linear Group] The general linear group GL{R") is
the set of all invertible real n x n-matrices where the group structure is given
by matrix multiplication (see also Exercise 2.55). (a) Prove that GL(R") is a
submanifold of R™. Hint: Consider the determinant function. (b) Determine the
tangent space of GL(R™) at its identity. Hint: Apply Exercise 1.110. (c) Prove
that the map GL(R")x GL(R") — GL(R™) given by (4, B) — AB is smooth. (d)
Prove that the map GL({R™) —+ GL(R™) given by A — A~! is smooth. Note: A
Lie group is a group that is also a smooth manifold such that the group operations
are smooth. The vector space TG L(R"™) is called the Lie algebra of the Lie group
when endowed with the multiplication [A4, B] = AB — BA.
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Exercise 1.113. (a) Prove that the tangent bundle of the torus T? is trivial;
that is, it can be viewed as TT? = T? x R2. (b) (This exercise requires some
knowledge of topology) Prove that the tangent bundle of S2 is not trivial.

Exercise 1.114. Suppose that f : R* = R" is smooth and the differential
equation & = f(z) has a first integral all of whose level sets are compact. Prove
that the corresponding flow is complete.

Exercise 1.115. Prove: The diagonal
{(z,y) eR"xR™ : 2 =y}
in R™ x R™ is an invariant set for the system

t=f@)+hy-2), §=Ff)+9(x-y)
where f,g,h : R" — R" and g(0) = h(0).

Exercise 1.116. |An Open Problem in Structural Stability] Let H(z,y,z) be
a homogeneous polynomial of degree n and 7 the outer unit normal on the unit
sphere §* C R®. Show that the vector field Xu = grad H —nH7 is tangent to 8%,

Call a rest point isolated if it is the unique rest point in some open set. Prove
that if n is fixed, then the number of isolated rest points of Xy is uniformly
bounded over all homogeneous polynomials H of degree n. Suppose that n = 3,
the uniform bound for this case is B, and m is an integer such that 0 < m < B.
What is B? Is there some H such that Xz has exactly m rest points? If not,
then for which m is there such an H? What if n > 3?7

Note that the homogeneous polynomials of degree n form a finite dimensional
vector space Hn,. What is its dimension? Is it true that for an open and dense
subset of #, the corresponding vector fields on $2 have only hyperbolic rest
points?

In general, if X is a vector field in some class of vector felds H, then X is
called structurally stable with respect to 7 if X is contained in some open subset
U C H such that the phase portrait of every vector field in U is the same; that is,
if Y is a vector field in U, then there is a homeomorphism of the phase space that
maps orbits of X to orbits of Y. Let us define X, to be the set of all vector fields
on S2 of the form Xy for some H & Hy. It is an interesting unsolved problem to
determine the structurally stable vector fields in X, with respect to A,.

One of the key issues that must be resolved to determine the structural stability
of a vector field on a two-dimensional manifold is the existence of heteroclinic
orbits. A heteroclinic orbit is an orbit that is contained in the stable manifold
of a saddle point g and in the unstable manifold of a different saddle point p. If
P = g, such an orbit is called homoclinic. A basic fact from the theory of structural
stability is that if two saddle points are connected by a heteroclinic orbit, then
the local phase portrait near this orbit can be changed by an arbitrarily small
smooth perturbation. In effect, a perturbation can be chosen such that, in the
phase portrait of the perturbed vector field, the saddle connection is broken (see
Figure 1.15). Thus, in particular, a vector field with two saddle points connected
by a heteroclinic orbit is not structurally stable with respect to the class of all
smooth vector fields. Prove that a vector field X5 in X, cannot have a homoclinic
orbit. Also, prove that Xz cannot have a periodic orbit. Construct a homogeneous
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Figure 1.16: 4 » .
g :gS — M. the “push forward” of vector field f by a diffeomorphism

by a heteroclinic orbit.

Is every helteroclinic orbit of a vector field X H € A3 an arc of a great circle? The
answe;r to this qu<?st10n 18 not known. But if it is true that all heteroclinic orbits
ta.;e a;cs of great circles, then the structurally stable vector fields, with respect to

e class A3, are exactly those vector fields with all their rest points hyperbolic

no heteroclinic orbits f. .
the o orbits for |e| sufficiently small. In fact, K can be chosen to be of

K(z,y,2) = (az + by + cz)(z® + y* + 2)

fT_r .smtab'le constants a, b, zifnd ¢. (Why?) Of course, the conjecture that hetero-
clinic orbits of _v.ector fields in 3 lie on great circles is just one approach to the
str;;tural stability question for Xs. Can you find another approach?
ere is an extensive and far-reaching literature on the j :
he subject
stability (see, for example, [192] and [204)). Ject of structural

1.8.4  Change of Coordinates

The pr.oof of Proposition 1.107 contains an important computation that is
Iuseful In many other contexts; namely, the formula for changing coordinates
i an autonomous differential equation. To reiterate this result Suppo

tha.t we have a differential equation # — f(z) where z € R®, and :5' CI?R?” p
an invariant k-dimensional submanifold. If gisa diﬁeomorp,hism fro;n S tlS
some ‘k-dimensional submanifold M C R™, then the ordinary differentiacll
equation (or, more precisely, the vector field associated with the differential

equation) can be “pushed forward” to M. In fact, i
: : ct, if g : i
diffeomorphism, then PSSR RS

U= Dglg™ () f(g™ (v)) (1.23)
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is a differential equation on M. Since g is a diffeomorphism, the new differ-
ential equation is the same as the original one up to a change of coordinates
as schematically depicted in Figure 1.16.

Example 1.117. Consider & =z — 2%, z ¢ R. Let S = {z € R : z > 0},
M =5, and let g : § — M denote the diffeomorphism defined by g(z) =
1/x. Here, g~1(y) = 1/y and

9= Dg(g7 W) (g™ ()
1n-2/1 1

= —y+ 1.

The diffeomorphism g defines the change of coordinates y = 1 /z used to
solve this special form of Bernoulli’s equation; it is encountered in elemen-
tary courses on differential equations.

Exercise 1,118. According to the Hartman-Grobman theorem 1.47, there is
a homeomorphism (defined on some open neighborhood of the origin) that maps
orbits of # = y to orbits of £ = x ~ . In this case, the result is trivial; the

homeomorphism h given by h(y) = y satisfies the requirement. For one and
two-dimensional systems (which are at least twice continuously differentiable) a
stronger result is true: There is a diffeomorphism 4 defined on a neighborhood
of the origin with h(0) = 0 such that h transforms the linear system into the
nonlinear system. Find an explicit formula for h and describe its domain.

Exercise 1.119. [Bernoulli’s Equation] Show that the differential equation
& = g{t)x — h(t)z"

15 transformed to a linear differential equation by the change of coordinates y=
1fz™t,

Coordinate transformations are very useful in the study of differential
equations. New coordinates can reveal unexpected features. As a dramatic
example of this phenomenon, we will show that all autonomous differential
equations are the same, up to a smooth change of coordinates, near each
of their regular points. Here, a regular point of & = f(z) is a point p € R™,
such that f(p) # 0. The following precise statement of this fact, which is
depicted in Figure 1.17, is called the rectification lemma, the straightening

out theorem, or the flow box theorem.

Lemma 1.120 (Rectification Lemma). Suppose that & = f(z), z €
R™. Ifp € R” and f(p) # 0, then there are open sets U, V in R® with
pe U, and a diffeomorphism g : U — V such that the differential equation
un the new coordinates, that is, the differential equation

9= Dglg™ W) flg™ (),



