MA 532 Problems for Chapter 5

S. Schecter

November 16, 2012

1. Consider the system in problem 9 of chapter 4, which you have already worked with. Assume that $K_2K_3 - K_1K_4 > 0$, so there is an equilibrium (x_*, y_*) with $x_* > 0$ and $y_* > 0$. It is the solution of the pair of equations

$$1 - \frac{x}{K_1} + \frac{y}{K_3} = 0, \quad 1 + \frac{x}{K_2} - \frac{y}{K_4} = 0.$$
(1)

In this problem I suggest that you not find a formula for (x_*, y_*) and that you never put two fractions over a common denominator.

- (a) Find the 2×2 matrix Df(x, y).
- (b) Substitute $(x, y) = (x_*, y_*)$ into your answer to part (a) to obtain $Df(x_*, y_*)$, and simplify using the fact that (x_*, y_*) is the solution of (1).
- (c) Show that trace $Df(x_*, y_*) < 0$ and $\det Df(x_*, y_*) > 0$. Consult Proposition 2.4.4 in the text or your notes to see that this implies that (x_*, y_*) is an attractor.
- 2. Using the previous problem as a guide, do problem 2(b') in chapter 5.
- 3. Problem 2(d) in chapter 4. (The Lorenz equations are in problem 8(e) of Chapter 4.) Use linearization. Also: for $\rho > 1$ show that the equilibrium at the origin is hyperbolic, and give the dimensions of the stable and unstable manifolds.
- 4. (Based on problems 3(a) and (b) in chapter 5.) Consider the differential equation $\ddot{x} + b\dot{x} x + x^3 = 0$. Written as a system, it is

$$\dot{x} = y, \quad \dot{y} = x - x^3 - by.$$
 (2)

- (a) For b = 0, find a function of the form $H(x, y) = \frac{1}{2}y^2 + V(x)$ that is constant on solutions. Choose V so that V(0) = 0.
- (b) For b = 0, use your answer to (a) to draw the phase portrait.
- (c) For b > 0, show that $H \leq 0$.
- (d) Let

$$U_1 = \{(x, y) : -\sqrt{2} < x < 0 \text{ and } H(x, y) < 0\}$$
$$U_2 = \{(x, y) : 0 < x < \sqrt{2} \text{ and } H(x, y) < 0\}.$$

For b > 0, use LaSalle's invariance principle to show that every solution that starts in U_1 approaches the equilibrium (-1, 0), and every solution that starts in U_2 approaches the equilibrium (1, 0).

- (e) For b > 0, use LaSalle's invariance principle to show that every solution approaches one of the three equilibria.
- 5. Show that for $\rho < 1$, the function $L(x, y, z) = \frac{x^2}{\sigma} + y^2 + z^2$ is a strict Liapunov function for the equilibrium at the origin of the Lorenz equations. (You will need to know how to show that a quadratic form $ax^2 + bxy + cy^2$ is positive definite, i.e., positive except at (x, y) = (0, 0). If you can't figure this out, please ask.) Then use LaSalle's invariance principle to show that the origin is globally asymptotically stable.
- 6. Problem 4(a) in chapter 5. Use problem 1 of this homework set together with the slope of the unstable manifold of the origin.
- 7. Problem 4(b) in chapter 5. The system is again the one in problem 9 of chapter 4.
- 8. There is an alternate approach to Theorem 5.1.1 that uses a fixed point argument instead of Grönwall's inequality. We will show only stability of the equilibrium; some more work is needed to show asymptotic stability.

As in Theorem 5.1.1, we consider $\dot{x} = Ax + r(x)$, $x \in \mathbb{R}^n$, where all eigenvalues of A have real part less than -a < 0. We assume r is C^1 , r(0) = 0, and Dr(0) = 0. We want to show that the equilibrium at 0 is stable. In other words, given $\delta > 0$, we want to find a number $\gamma > 0$ such that if $|b| \leq \gamma$, then the solution x(t) with x(0) = b satisfies $|x(t)| \leq \delta$ for $0 \leq t < \infty$.

Any solution of $\dot{x} = Ax + r(x)$, x(0) = b, satisfies

$$x(t) = e^{At}b + \int_0^t e^{A(t-s)} r(x(s)) \, ds.$$
(3)

Let $C^0([0,\infty),\mathbb{R}^n)$ denote the space of *bounded* continuous functions from $[0,\infty)$ to \mathbb{R}^n with the sup norm:

$$||x|| = \sup_{0 < t < \infty} |x(t)|.$$

This is a Banach space. Define a mapping $T : C^0([0,\infty),\mathbb{R}^n) \to C^0([0,\infty),\mathbb{R}^n)$ by Tx = the right hand side of (3). (You should check that if x(t) is bounded on $0 \le t < \infty$, then Tx(t) is bounded on $0 \le t < \infty$.) The solution we are looking for is a fixed point of T.

Let

$$B = \{ x \in C^0([0, \infty), \mathbb{R}^n) : x(0) = b \text{ and } ||x|| \le \delta \},\$$

a closed set. (Of course the definition of *B* depends on δ and *b*.) Given $\delta > 0$, we wish to find $\gamma > 0$ such that if $|b| \leq \gamma$, then *T* maps *B* into itself and is a contraction. If we can do this, the fixed point of the mapping is what we want.

There is a number K > 0 such that $||e^{At}|| \le Ke^{-at}$ for $t \ge 0$.

Here is a useful fact. Since r is C^1 and Dr(0) = 0, for each $\epsilon > 0$ there exists $\eta > 0$ such that if $|x| \leq \eta$, then $||Dr(x)|| \leq \epsilon$. Then we have two nice estimates:

• For $|x| \leq \eta$, by the Mean Value Theorem, $r(x) - r(0) = \left(\int_0^1 Dr(tx) dt\right) x$. Since $r(0) = 0, |r(x)| \leq \epsilon |x|$.

• For $||x_1|| \leq \eta$ and $||x_2|| \leq \eta$, by the Mean Value Theorem, $r(x_2) - r(x_1) = \left(\int_0^1 Dr(x_1 + t(x_2 - x_1)) dt\right) (x_2 - x_1)$, so $|r(x_2) - r(x_1)| \leq \epsilon |x_2 - x_1|$

It is enough to prove the result for small δ . We will only use δ small enough so that $|x| \leq \delta$ implies $||Dr(x)|| \leq \frac{a}{2K}$.

- (a) Show that for such a δ , if $|b| \leq \frac{\delta}{2K}$, then T maps B into B.
- (b) What additional condition must be place on δ so that T is a contraction?