MA 532 Homework 6

S. Schecter

October 10, 2012, corrected October 16, 2012

- 1. Consider the linear differential equation $\dot{x} = Ax + f(t)$ with $x \in \mathbb{R}^n$ and f continuous. Suppose there exist numbers A > 0, $\mu > 0$, and $\nu > 0$ such that (1) all eigenvalues of A have real part less than or equal to $-\mu$, and (2) for $t \ge 0$, $|f(t)| \le Ae^{-\nu t}$. Show that all solutions are bounded on $0 \le t < \infty$. (Proposition 2.4.3 and formula (2.39) should help.)
- 2. Section 3.5 problem 1(c), with the following suggestions and changes:
 - (a) $F(x) = \sqrt{|x|}$: Is |F(x) F(0)|/|x 0| bounded for x near 0?
 - (b) Of course F(x) = |x| is not differentiable at 0, you can ignore that part of the question. You need to find a bound for |F(x) F(y)|/|x-y| that works for all $x \neq y$.
 - (c) $F(x) = x^2$ is locally Lipschitz because it is C^1 , you can ignore that part of the question. Show that |F(x) F(y)|/|x y| can be arbitrarily large.
- 3. Section 3.5 problem 1(h). You must show that if $|x x_k| < \frac{\delta_k}{2}$ and $|y x_k| \ge \delta_k$, then $|y x| > \frac{\delta_k}{2}$, without relying on a picture. Here x, x_k , and y are points in \mathbb{R}^n .
- 4. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ and $G : \mathbb{R}^m \to \mathbb{R}^l$ be Lipschitz. Prove: $G \circ F$ is Lipschitz. Explain how to do Section 3.5 problem 2(b) using this result.
- 5. Section 3.5 problem 5(b).
- 6. (Based on Section 3.5 problem 6(b).) $F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is *locally* Lipschitz in x if for each $(x_0, t_0) \in \mathbb{R}^n \times \mathbb{R}$, there exist positive numbers L, δ , and η such that:

If $|x_1 - x_0| < \delta$, $|x_2 - x_0| < \delta$, and $|t - t_0| < \eta$, the $|F(x_1, t) - F(x_2, t)| \le L|x_1 - x_2|$.

Notice that the points (x_1, t) and (x_2, t) differ only in their x-coordinate.

Consider $\dot{x} = F(x,t)$ with $F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ locally Lipschitz in x and continuous. Prove: The initial value problem $\dot{x} = F(x,t), x(t_0) = x_0$, has a solution defined on an interval of the form $(t_0 - \eta, t_0 + \eta)$. You should be able to do this by mimicking the proof of the Existence Theorem for autonomous equations.

7. Section 4.6 problem 3.