MA 532 Homework 6

S. Schecter

October 10, 2012, corrected October 16, 2012

1. Consider the linear differential equation $\dot{x}=A x+f(t)$ with $x \in \mathbb{R}^{n}$ and f continuous. Suppose there exist numbers $A>0, \mu>0$, and $\nu>0$ such that (1) all eigenvalues of A have real part less than or equal to $-\mu$, and (2) for $t \geq 0,|f(t)| \leq A e^{-\nu t}$. Show that all solutions are bounded on $0 \leq t<\infty$. (Proposition 2.4.3 and formula (2.39) should help.)
2. Section 3.5 problem 1(c), with the following suggestions and changes:
(a) $F(x)=\sqrt{|x|}$: Is $|F(x)-F(0)| /|x-0|$ bounded for x near 0 ?
(b) Of course $F(x)=|x|$ is not differentiable at 0 , you can ignore that part of the question. You need to find a bound for $\mid F(x)-$ $F(y)|/|x-y|$ that works for all $x \neq y$.
(c) $F(x)=x^{2}$ is locally Lipschitz because it is C^{1}, you can ignore that part of the question. Show that $|F(x)-F(y)| /|x-y|$ can be arbitrarily large.
3. Section 3.5 problem 1 (h). You must show that if $\left|x-x_{k}\right|<\frac{\delta_{k}}{2}$ and $\left|y-x_{k}\right| \geq \delta_{k}$, then $|y-x|>\frac{\delta_{k}}{2}$, without relying on a picture. Here x, x_{k}, and y are points in \mathbb{R}^{n}.
4. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ be Lipschitz. Prove: $G \circ F$ is Lipschitz. Explain how to do Section 3.5 problem 2(b) using this result.
5. Section 3.5 problem 5(b).
6. (Based on Section 3.5 problem 6(b).) $F: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is locally Lipschitz in x if for each $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}$, there exist positive numbers L, δ, and η such that:
If $\left|x_{1}-x_{0}\right|<\delta,\left|x_{2}-x_{0}\right|<\delta$, and $\left|t-t_{0}\right|<\eta$, the $\left|F\left(x_{1}, t\right)-F\left(x_{2}, t\right)\right| \leq$ $L\left|x_{1}-x_{2}\right|$.

Notice that the points $\left(x_{1}, t\right)$ and $\left(x_{2}, t\right)$ differ only in their x-coordinate.

Consider $\dot{x}=F(x, t)$ with $F: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ locally Lipschitz in x and continuous. Prove: The initial value problem $\dot{x}=F(x, t), x\left(t_{0}\right)=x_{0}$, has a solution defined on an interval of the form $\left(t_{0}-\eta, t_{0}+\eta\right)$. You should be able to do this by mimicking the proof of the Existence Theorem for autonomous equations.
7. Section 4.6 problem 3.

