MA 532 Homework 5

S. Schecter

September 18, 2012

1. Prove: $\frac{d}{d t} A^{-1}(t)=-A^{-1}(t) \dot{A}(t) A^{-1}(t)$. Hint: $A(t) A^{-1}(t)=I$ for all t.
2. Consider the linear differential equation

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
t & 0 \\
1 & t
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

Find the state transition matrix $\Psi(t, s)$. Recall that $\Psi(t, s)$ is a matrix whose entries depend on t and s, with the property that for any solution and any times t and $s, x(t)=\Psi(t, s) x(s)$. Suggestion: If you can find a fundamental matrix solutions (the columns are two linearly independent solutions) $\Phi(t)$, then $\Psi(t, s)=\Phi(t) \Phi^{-1}(s)$. You can find the general solution by first solving the \dot{x}_{1} equation (since it only depends on x_{1}), then substituting into the \dot{x}_{2} equation.
3. Let A be a 4×4 real matrix, and consider the linear differential equation $\dot{x}=A x$. Suppose that A has the complex eigenvalues $a \pm b i$ repeated twice, and the complex Jordan form is

$$
\left(\begin{array}{cccc}
a+b i & 1 & 0 & 0 \\
0 & a+b i & 0 & 0 \\
0 & 0 & a-b i & 1 \\
0 & 0 & 0 & a-b i
\end{array}\right)
$$

Let $v+i w$ be an eigenvector for the eigenvalue $a+b i$, and let $y+i z$ satisfy $(A-(a+b i) I)(y+i z)=v+i w$. Show that

$$
A\left(\begin{array}{llll}
v & w & y & z
\end{array}\right)=\left(\begin{array}{llll}
v & w & y & z
\end{array}\right)\left(\begin{array}{cccc}
a & b & 1 & 0 \\
-b & a & 0 & 1 \\
0 & 0 & a & b \\
0 & 0 & -b & a
\end{array}\right) .
$$

(Thus the matrix ($\left.\begin{array}{llll}v & w & y & z\end{array}\right)$ can be used to conjugate $\dot{x}=A x$ to real Jordan form.) Suggestion: To get started, you know that $A(v+i w)=$ $(a+b i)(v+i w)$. Multiply out and equate real and imaginary parts to find $A v$ and $A w$. Actually, we did this in class.
4. For each of the following linear differential equations, use eigenvalues and eigenvectors to sketch the phase portrait. If typical solutions approach the origin as $t \rightarrow \infty$ or as $t \rightarrow-\infty$, be sure that your picture clearly shows the line through the origin along which they approach. Exception: if the eigenvalues are complex, you don't need to draw a picture. Just state whether solutions rotate clockwise or counterclockwise (with justification), and state whether they spiral in, spiral out, or close up.
(a) $\dot{x}=\left(\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right) x$
(b) $\dot{x}=\left(\begin{array}{cc}0 & 2 \\ -1 & 2\end{array}\right) x$
(c) $\dot{x}=\left(\begin{array}{ll}4 & -2 \\ 2 & -1\end{array}\right) x$
(d) $\dot{x}=\left(\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right) x$
5. Consider the initial value problem

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{x_{1}}{x_{2}}, \quad\binom{x_{1}(0)}{x_{2}(0)}=\binom{x_{1}^{0}}{x_{2}^{0}} .
$$

(a) Find the solution. (Suggestion: solve the \dot{x}_{2} equation first.)
(b) Show that if $x_{2}^{0} \neq 0$,

$$
\frac{x_{2}(t)}{x_{1}(t)} \rightarrow 0 \text { from the right as } t \rightarrow+\infty
$$

(c) Explain the following: if $\lambda<0$, then for $x_{2}^{0}>0$, the solution approaches the origin from the right and becomes close to the x_{1} axis ; for $x_{2}^{0}<0$, the solution approaches the origin from the left and becomes close to the x_{1}-axis.

