MA 532 Homework 4

S. Schecter

September 14, 2012

1. If A is a square matrix, we know that there is a matrix in Jordan form J and a change-of-coordinates matrix P such that $P^{-1} A P=J$. We also know that $e^{t A}=P e^{t J} P^{-1}$.
For each of the following matrices A, find $J, e^{t J}$, and a change-of-coordinates matrix P. From this information you could compute $e^{t A}$, but don't do it.
(a) $\left(\begin{array}{cc}-1 & -2 \\ 4 & 3\end{array}\right)$
(b) $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1\end{array}\right)$

Comment: There is a triple eigenvalue 1 and just one eigenvector v_{1} (up to multiplication by a number). You need to find v_{1}, v_{2} such that $(A-I) v_{2}=v_{1}$, and v_{3} such that $(A-I) v_{3}=v_{2}$. Unless you are very unlucky, you should be able to pick v_{3} at random at random and then use it to find v_{2} and v_{1}.
(d) $\left(\begin{array}{ccc}2 & 0 & 1 \\ 1 & 2 & -2 \\ -1 & 0 & 2\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & -2 \\ 0 & -1 & 4 \\ 0 & 0 & 1\end{array}\right)$
2. Chapter 2 problem 6. First find A. Then show (1) for fixed $\delta>0$, as $\epsilon \rightarrow 0,\|A\| \rightarrow \infty$, and (2) for fixed $\epsilon>0$, as $\delta \rightarrow 0,\|A\| \rightarrow \infty$. To do this, you do not need to calculate $\|A\|$. If you take a particular v and calculate $\|A v\|$ and $\|v\|$, then you know that $\|A\| \geq\|A v\| /\|v\|$.
3. Chapter 2 problem 8. In this problem, $\langle x, y\rangle=x \cdot y$ (dot product) and $|x|$ is the Euclidean norm, so $|x|^{2}=<x, x>=x \cdot x$. Follow the hint until you get

$$
\frac{d}{d t} u(t) \leq-2 \gamma u(t)
$$

After that, an alternative approach to the one in the hint is to rewrite the inequality as

$$
\frac{\dot{u}}{u} \leq-2 \gamma
$$

and integrate both sides from 0 to t.
4. Let A be an invertible $n \times n$ matrix, and let b be a vector in \mathbb{R}^{n}. Consider the differential equation

$$
\begin{equation*}
\dot{x}=A x+b, \quad x(0)=x_{0} . \tag{1}
\end{equation*}
$$

(a) Show that the change of coordinates $u=x+A^{-1} b$ converts this differential equation to

$$
\begin{equation*}
\dot{u}=A u, \quad u(0)=x_{0}+A^{-1} b \tag{2}
\end{equation*}
$$

(b) The solution of (2) is of course $u=e^{t A} u(0)$. By undoing the change of coordinates find the solution of (1).
5. Let A be an $n \times n$ matrix, and let f be a continuous function from an interval J that contains 0 to \mathbb{R}^{n}. Consider the differential equation

$$
\begin{equation*}
\dot{x}=A x+f(t), \quad x(0)=x_{0} . \tag{3}
\end{equation*}
$$

Our formula for the solution of an inhomogeneous linear differential equation (the "variation of constants" or "variation of parameters" formula), in the special case where A is constant, says that the solution is

$$
\begin{equation*}
x=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} f(s) d s \tag{4}
\end{equation*}
$$

Suppose A is invertible and $f(t)$ is a constant vector b. Try to rewrite (4) to equal your solution to 4(b).

