
DIFFERENTIABILITY OF THE FLOW

S. SCHECTER

Theorem 0.1. Let U be an open subset of Rn, let f : U → R
n be C1, and consider the

differential equation ẋ = f(x), x ∈ U . Let φ(t, y) be the flow. Then φ is C1 and Dyφ(t, y) is

the solution of the linear differential equation Φ̇ = Df(φ(t, y))Φ, Φ(0) = I.

Remarks:
(1) For each (t, y), Dyφ(t, y) is an n× n matrix.

(2) With y fixed, Φ̇ = Df(φ(t, y))Φ is a nonautonomous linear differential equation. We
are looking for the fundamental matrix solution that is principal at t = 0.

(3) We have already shown that φ is continuous, and that for each y0 ∈ U and time T

such that φ(y0, t) is defined for 0 ≤ t ≤ T , there are numbers δ > 0 and L > 0 such that if
|y1 − y0| < δ, then |φ(y1, t)− φ(y0, t)| ≤ L|y1 − y0| for 0 ≤ t ≤ T .

Lemma 0.2. Let U be an open subset of Rn, let f : U → R
n be C1, and define R : U ×U →

R
n by

R(x, z) =

{

1
|z−x|

(

f(z)− f(x)−Df(x)(z − x)
)

if z 6= x,

0 if z = x.

Let K be a compact subset of U , and let K̃ be a compact η-neighborhood of K. Then: given

ǫ > 0 there exists δ > 0 such that if x, z ∈ K̃ and |z − x| < δ, then |R(x, z)| < ǫ.

Proof. For z close to x, the Mean Value Theorem yields:

R(x, z) =
1

|z − x|

(

(
∫ 1

0

Df
(

x+ t(z − x)
)

dt

)

(z − x)−Df(x)(z − x)

)

=
1

|z − x|

(
∫ 1

0

(

(Df
(

x+ t(z − x)
)

−Df(x)
)

dt

)

(z − x).

Now Df(x) is a continuous function of x, and on K̃ it is uniformly continuous. Therefore
given ǫ > 0 there exists δ > 0 such that if x, z ∈ K̃ and |z−x| < δ then ‖Df(z)−Df(x)‖ < ǫ.
For such x, z, with x 6= z,

|R(x, z)| <
1

|z − x|
ǫ|z − x| = ǫ.

�

Proof of Theorem: Fix y ∈ U and a time T such that φ(y, t) is defined for 0 ≤ t ≤ T . For
0 ≤ t ≤ T , define

g(t, h) = |φ(t, y + h)− φ(t, y)− Φ(t, y)h|,
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where Φ(t, y) is the solution of Φ̇ = Df(φ(t, y))Φ, Φ(0) = I. We need to show that g(t,h)
|h|

→ 0

as h → 0.
We calculate:

g(t, h) =

∣

∣

∣

∣

y + h+

∫ 1

0

f
(

φ(s, y + h)
)

ds−

(

y +

∫ 1

0

f
(

φ(s, y)
)

ds

)

−

(

I +

∫

Df
(

φ(s, y)
)

Φ(s, y) ds

)

h

∣

∣

∣

∣

=

∫ 1

0

f(φ(s, y + h))− f(φ(s, y))−Df(φ(s, y))Φ(s, y)h ds. (0.1)

The definition of R can be rearranged to yield

f(z)− f(x) = Df(x)(z − x) +R(x, z)|z − x|.

Apply this to (0.1) with x = φ(s, y) and z = φ(s, y + h):

g(t, h) =

∣

∣

∣

∣

∫ t

0

Df(φ(s, y))
(

φ(s, y + h)− φ(s, y)
)

+R(φ(s, y), φ(s, y+ h)) · |φ(s, y + h)− φ(s, y)| −Df(φ(s, y))Φ(s, y)h ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

Df(φ(s, y))
(

φ(s, y + h)− φ(s, y)− Φ(s, y)h
)

+R(φ(s, y), φ(s, y+ h)) · |φ(s, y + h)− φ(s, y)| ds

∣

∣

∣

∣

.

Let M ≥ sup{‖Df(φ(s, y))‖ : 0 ≤ s ≤ T}. The sup is finite since Df(φ(s, y)) is a
continuous function of s and the interval 0 ≤ s ≤ T is compact. We shall also take M > 1.

Then

g(t, h) ≤

∫ t

0

M
∣

∣φ(s, y + h)− φ(s, y)− Φ(s, y)h
∣

∣ ds

+

∫ t

0

|R(φ(s, y), φ(s, y+ h))| · |φ(s, y + h)− φ(s, y)| ds

=

∫ t

0

Mg(s, h) ds+

∫ t

0

|R(φ(s, y), φ(s, y+ h))| · |φ(s, y + h)− φ(s, y)| ds.

We want to choose δ > 0 so that for |h| < δ and 0 ≤ s ≤ T , we have

(1) |R(φ(s, y), φ(s, y+ h))| < ǫ
LTeMT , and

(2) |φ(s, y + h)− φ(s, y)| ≤ L|h|.

If we can do this, then for |h| < δ and 0 ≤ t ≤ T we have

g(t, h) ≤

∫ t

0

Mg(s, h) ds+

∫ t

0

ǫ

LTeMT
L|h| ds ≤

∫ t

0

Mg(s, h) ds+
ǫ

eMT
|h|.

Then by Grönwall’s inequality,

g(t, h) ≤
ǫ

eMT
|h|eMt ≤ ǫ|h| for |h| < δ and 0 ≤ t ≤ T.

This proves that g(t,h)
|h|

→ 0 as h → 0, which proves the Theorem.
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Can we find δ so that (1) and (2) are true for |h| < δ and 0 ≤ s ≤ T ?
By Lemma 0.2, given ǫ > 0, there exists δ1 > 0 such that if x, z ∈ K̃ and |z − x| < δ1,

then |R(x, z)| < ǫ
LTeMT .

By Remark (3), there exists δ2 > 0 such that if |h| < δ2, then |φ(s, y+h)−φ(s, y)| ≤ L|h|
for 0 ≤ s ≤ T .

Let δ = min
(

δ1
L
, δ2
)

. If |h| < δ, then both (1) and (2) are true for 0 ≤ s ≤ T .


