
Chapter 11

Appendix C: A compendium of results
from linear algebra

11.1 How to compute Jordan normal forms

In a linear algebra text, one expects the author to prove that an arbitrary square
matrix is similar to a Jordan canonical form, and this proof is a messy affair1. We
assume the reader has seen the definitions and the statement of the theorem but not
really followed the proof. Here we accept that a Jordan normal form exists, and we
ask, more simply, how to compute it. We break this problem into two sub-questions,
focusing more on examples than theory: given a matrix A,

Q1: How can we decide what the normal form of A is?

Q2: How can we find the similarity transformation that produces the normal form?

The first step in determining the normal form of A is to find the eigenvalues of
A. Of course finding eigenvalues analytically is an intractable problem in general.
We work with hand-picked examples in which the eigenvalues are readily computed.

Example 1:

A =

[
5 −2
2 1

]
.

It is readily computed that det(A − λI) = (λ − 3)2. Thus, there are two possible
Jordan forms for A,

J1 =

[
3 0
0 3

]
and J2 =

[
3 1
0 3

]
.

1One of the best treatments of Jordan forms of which we are aware is in Appendix B of Strang [?]
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If A were similar to J1 = 3I, then every vector in R2 would be an eigenvector.
However v ∈ R2 is an eigenvector iff (A− 3I)v = 0, or writing this out

[
2 −2
2 −2

]
v = 0.

Obviously not every vector satisfies this equation, so J2 must be the normal form
for A. Indeed, in hindsight we may see that if a 2 × 2 matrix has equal eigenvalues
but is not equal to a multiple of the identity, then its Jordan normal form must be
a 2× 2 block.

Higher-dimensional examples in which there are double eigenvalues, but none of
higher multiplicity, do not pose any additional difficulties, as we illustrate in some
of the Exercises. Let us turn our attention to eigenvalues of multiplicity three.

Example 2: Consider

A1 =




a 1 1
0 a 0
0 0 a


 A2 =




a 1 1
0 a 1
0 0 a


 A3 =




a 0 1
0 a 1
0 0 a


 .

By inspection, λ = a is the only eigenvalue of Aj. Thus the possible normal forms
for Aj are

J1 =




a

a

a


 J2 =




a 1
0 a

a


 J3 =




a 1 0
0 a 1
0 0 a




where, to facilitate visualization, entries that are zero but lie outside of any Jordan
block are left blank. We distinguish between cases by examining the dimension of
the eigenspaces. These dimensions may be computed most easily by applying the
“rank-plus-nullity” theorem (see Strang [?]), which gives us

dim ker(Jj − aI) = 3− rank(Jj − aI).

Thus J1,J2,J3 have eigenspaces of dimension 3, 2, 1, respectively. Proceeding simi-
larly, we find that A1, A2, A3 have eigenspaces of dimension 2, 1, 2, respectively. Since
the dimension of eigenspaces is preserved under similarity transformations, we con-
clude that A1, A2, A3 have Jordan forms J2,J3,J2, respectively.

Example 3:

A1 =




a 0 0 1
0 a 0 1
0 0 a 0
0 0 0 a


 A2 =




a 0 1 0
0 a 0 1
0 0 a 0
0 0 0 a


 A3 =




a 1 0 0
0 a 0 1
0 0 a 0
0 0 0 a


 .
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The possible Jordan forms are

J1 =




a

a

a

a


 J2 =




a 1
0 a

a

a


 J3 =




a 1 0
0 a 1
0 0 a

a




J4 =




a 1 0 0
0 a 1 0
0 0 a 1
0 0 0 a


 J5 =




a 1
0 a

a 1
0 a


 .

Proceeding as above, we compute that J1,J2,J3,J4,J5 have eigenspaces of dimension
4, 3, 2, 1, 2, respectively. We can see potential trouble here in that J3 and J5 both
have two-dimensional eigenspaces. Now A1, A2, A3 have eigenspaces of dimension
3, 2, 2 respectively. Thus we may conclude that A1 has J2 as its normal form, but
the dimension of the eigenspace does not distinguish between J3 and J5 for A2 and
A3. For this task we turn to generalized eigenvectors: a vector v ∈ Rd is called a
generalized eigenvector of a matrix A with eigenvalue λ if for some power p

(A− λI)pv = 0.

Choosing p = 2, we compute that (Jj − aI)2 has a three-dimensional null space for
j = 3 and a four-dimensional null space for j = 5. On the other hand, (Aj−aI)2 has
a four-dimensional null space if j = 2 and a three-dimensional null space if j = 3.
Thus the normal forms for A2, A3 are J5,J3, respectively.

Now we turn to the second question above, finding the similarity matrix S such
that S−1AS produces the Jordan form of A. As we shall see, the columns of S are
generalized eigenvectors of A (cf. Proposition ??).

Recall Example 1, where

A =

[
5 −2
2 1

]
, with J =

[
3 1
0 3

]

its Jordan form. Observe that, with respect to the standard basis e1, e2 for R2, the
matrix J satisfies

(J − 3I)e1 = 0 (J − 3I)e2 = e1.

To match this behavior for A, we need to find vectors v1,v2 such that

(A− 3I)v1 = 0 (A− 3I)v2 = v1,

3



and then the matrix S = Col(v1,v2) will achieve the required transformation. (Note
that (A− 3I)2v2 = 0, so v2 is a generalized eigenvector.) One possible choice is

S =

[
1 1/2
1 0

]
.

In the Exercises we ask the reader to check that this matrix performs the desired
task. Incidentally, there is great latitude in the choice of S, more so than in the case
of distinct eigenvalues.

More subtle issues may arise in cases of higher multiplicity. Let A be the first
of the three matrices considered in that Example 2, and let J be its Jordan form.
Observe that J satisfies

(J − aI)e1 = 0, (J − aI)e2 = e1, (J − aI)e3 = 0.

Thus we need to find vectors v1,v2,v3 such that

(A− aI)v1 = 0, (A− aI)v2 = v1, (A− aI)v3 = 0 (11.1)

and let S = Col(v1,v2,v3). Note that v1 and v3 are eigenvectors of A, but v1 must be
chosen with care in order that the middle equation in (11.1), which is inhomogeneous,
has a solution. Now the eigenspace of A is spanned by




1
0
0







0
1
−1


 .

Suppose v1 is a linear combination of these vectors with coefficients α, β. Writing
out the middle equation in (11.1), we have




0 1 1
0 0 0
0 0 0







x

y

z


 =




α

β

−β


 .

To have a solution we need β = 0; to avoid trivialities we need α 6= 0. Thus

S =




1 0 0
0 1 1
0 0 −1


 ,

where we have chosen α = 1, is one of the possible similarity matrices that transforms
A to its Jordan form.

In the Exercises we ask the reader to carry out this procedure and check that it
works for several of the matrices considered above.
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11.2 The Routh-Hurwitz criterion

It is astonishingly easy to determine whether a polynomial with real coefficients has
all its zeros in the left-half-plane. For example, for the two polynomials

Q1(λ) = λ4 + 2λ3 + 3λ2 + 2λ + 1
Q2(λ) = λ5 + 2λ4 + 3λ3 + 3λ2 + 2λ + 1,

the calculations in Table 11.2 show that the first has all its zeros in {<λ < 0} while
the second has at least one zero in {<λ ≥ 0}, respectively. Let us explain these
calculations in the context of a general polynomial

P (λ) = λn + c1λ
n−1 + c2λ

n−2 + . . . + cn−1λ + cn.

The algorithm is slightly different, depending on whether n is even or odd. Reflecting
this difference we define ν = [n/2] where [·] is the greatest-integer function: thus
n = 2ν if n is even and n = 2ν+1 if n is odd. The algorithm forms an (n+1)×(ν+1)
matrix A as follows. The first two rows of A contain the coefficients of even and odd
powers of λ:

a1l : 1 c2 c4 . . .

a2l : c1 c3 c5 . . . .

(If n is even, then 0 is inserted as the last entry of the second row, as in the table on
the left.) Subsequent rows, 3, 4, . . . , n + 1, are calculated inductively from products
that resemble 2× 2 determinants

ak+1,l = ak,lak−1,l+1 − ak,l+1ak−1,l. (11.2)

In words, computation of ak+1,l involves selecting entries from the two preceding
rows and from the same column as ak+1,l and the one to the right. In calculating the
last column (l = ν + 1), entries ak,ν+2 or ak−1,ν+2 outside the appropriate range are
assumed to be zero, as has been done in Table 11.2. Then we have:

Theorem 11.2.1. All the zeros of P lie in the open left half plane iff all entries
ak1, k = 1, . . . , n + 1, in the first column of the above matrix are positive.

If the calculation produces a zero row, as in the table on the right, then the
calculation is stopped and there is at least one zero in closed right half plane. Indeed,
note that Q2(±i) = 0. A root of P on the imaginary axis will cause a zero row, but
a zero row may arise under other circumstances, also.

This theorem is proved in Section 4.2 of Engelberg’s book. Although the proof
requires careful reading, it is not terribly difficult, just clever. In cases where some
of the zeros of P (λ) lie in the right half plane, it is usually possible to deduce how
many zeros lie there.
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1 2 3

1 1 3 1
2 2 2 0

3 4 2 0
4 4 0 0
5 8 0 0

1 2 3

1 1 3 2
2 2 3 1

3 3 3 0
4 3 3 0
5 0 0 0
6 – – –

Table 11.1: The matrices {akl} in the Routh-Hurwitz calculations for
Q1(λ) = λ4 +2λ3 +3λ2 +2λ+1 (left table) and Q2(λ) = λ5 +2λ4 +3λ3 +3λ2 +2λ+1
(right table). Values of k from 1 to n + 1 appear in the first column of each table;
values for l from 1 to ν + 1 appear in the top row. The two rows {akl : l = 1, 2},
which come directly from the coefficients of the polynomial, are separated from later
rows that come from the calculation indicated in (11.2).

Reference: Shlomo Engelberg, A Mathematical Introduction to Control The-
ory, Series in Electrical and Computer Engineering, Vol. 2, Imperial College Press,
London, 2005. Duke Catalogue QA402.3.E527.

If A is a d × d matrix with real entries, then in principle one could calculate
the characteristic polynomial of A and apply the Routh-Hurwitz criterion to it to
determine whether the eigenvalues of A lie in the left half plane. However, calcu-
lating the characteristic polynomial of a moderately large matrix by hand is not a
pleasant task. (One could of course resort to symbolic computations to obtain the
characteristic polynomial, but if the computer is involved, one might as well com-
pute eigenvalues directly.) Thus we refrain even from formulating an analogue of
Theorem ?? for 4× 4 matrices. However, let us use the Routh-Hurwitz criterion to
handle the 3× 3 case.

Proof of Proposition ??. Let A be a 3× 3 matrix with characteristic polynomial

det(A− λI) = −[λ3 + c1λ
2 + c2λ + c3].

The table applying the Routh-Hurwitz criterion to this polynomial is shown in Ta-
ble 11.2. Thus the roots of this polynomial are all in the left half plane iff

(a) c1 > 0, (b) c1c2 − c3 > 0, (c) c3 > 0. (11.3)
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1 2

1 1 c2

2 c1 c3

3 c1c2 − c3 0
4 c3(c1c2 − c3) 0

Table 11.2: The matrix {akl} in the Routh-Hurwitz calculations for the general
cubic λ3 + c1λ

2 + c2λ + c3.

The coefficients cj are related to the eigenvalues of A through

c1 = −(λ1 + λ2 + λ3)
c2 = λ1λ2 + λ2λ3 + λ3λ1

c3 = −λ1λ2λ3.

Thus it is apparent that (11.3a) and (c) are equivalent to Conditions (i) and (iii) of
Theorem ??, and the equivalence of (11.3b) with Condition (ii) follows on observing
that

c2 =
1

2
[(trA)2 − tr(A2)].

11.3 Continuity of eigenvalues of a matrix with respect to
its entries

Near simple eigenvalues, the dependence of eigenvalues of a matrix on its entries is
as nice as one could wish. Specifically, we have the following

Proposition 11.3.1. Let λ1 be a simple eigenvalue of a d× d matrix A0. There is
an ε > 0 and a neighborhood U of A0 in Rd2

such any matrix A ∈ U has exactly one
eigenvalue in the disk {|z−λ1| < ε}, and moreover this eigenvalue is a differentiable
function on U .

Proof. We prove this result by applying the implicit-function theorem to solve for λ

in the equation for eigenvalues,

f(λ,A) = det(A− λI) = 0.

Now f(λ,A0) is a product of eigenvalues (λ1− λ) . . . (λd− λ). Differentiation of this
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product with respect to λ gives d terms, but only one of them is nonzero at λ = λ1:

∂f

∂λ
(λ1, A0) = −(λ2 − λ1) . . . (λd − λ1).

Since λ1 is a simple eigenvalue, this product is nonzero, which completes the proof.

Suppose that A0 has a simple eigenvalue λ1, and consider a one-parameter family
of perturbations, A0 + εB. It follows from the proposition that there is a smoothly
varying eigenvalue λ1(A0 + εB) that equals λ1 when ε = 0. In Exercise ?? we give a
formula for calculating the derivative of this eigenvalue with respect to ε at ε = 0.

Near multiple eigenvalues, the dependence of eigenvalues of a matrix on its entries
is complicated by a difficulty familiar from complex function theory. For example,
consider the matrix function

A(α, β) =

[
0 1

α + iβ 0

]
,

which has eigenvalues λj(α, β) = ±√α + iβ. We claim it is impossible to define
these square roots as continuous functions of α, β in a neighborhood of zero in R2.
To see this, suppose otherwise that there are continuous eigenvalues λj(α, β). On
the positive α-axis, the eigenvalues are ±√α. Index the eigenvalues so that λ1 is
positive on the positive α-axis, and let us restrict λ1 to a small circle that encloses
the origin: i.e., let

Λ(φ) = λ1(ε cos φ, ε sin φ), where 0 ≤ φ < 2π.

Calcluation then shows that
Λ(φ) =

√
ε eiφ/2. (11.4)

If λ1 were continuous we would have Λ(2π) = Λ(0), but in fact (11.4) implies that
Λ(2π) = −Λ(0). This contradiction proves the claim.

The reader may protest that the matrix in this example has complex entries, but
here is a 4× 4 matrix with real entries that exhibits the same difficulty:

A(α, β) =

[
0 I

B(α, β) 0

]

where 0 is the 2× 2 zero matrix, I is the 2× 2 identity matrix, and

B(α, β) =

[
α −β

β α

]
.

Although at a multiple eigenvalue, one cannot define individual eigenvalues con-
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tinuously, nonetheless the group of eigenvalues does vary continuously, in the sense
of the following

Proposition 11.3.2. Let λ1 be an eigenvalue of a d× d matrix A0 of multiplicity k.
There is an ε0 > 0 with the property that for all ε < ε0 there is a neighborhood U of
A0 in Rd2

such any matrix A ∈ U has exactly k eigenvalue in the disk {|z−λ1| < ε}.

The conclusion of this result is a standard epsilon-delta characterization of conti-
nuity, with three differences: (i) a set of eigenvalues, rather than a single eigenvalue,
is being bounded, (ii) an upper bound is needed on epsilon, and (iii) delta is relaced
by the neighborhood U . Two remarks: (i) For ε0 one may use any number less
than the minimum separation between λ1 and the other eigenvalue of A0. (ii) The
maximum diameter of U scales like ε1/k as ε → 0.

The proposition is easily proved with complex-function theory, but, since this
subject is not a pre-requisite for this text, we do not give the proof here.

Corollary 11.3.3. Suppose all the eigenvalues of A lie in the left half plane {<λ <

0}. For any perturbation matrix B, for sufficiently small ε all the eigenvalues of
A + εB also lie in the left half plane.

The reader is asked to derive this corollary in the Exercises.

If one restricts attention to symmetric matrices, then all eigenvalues are real, and
one may define individual eigenvalues continuously by ordering them. For example,
we may define λ1(A) to be the smallest eigenvalue of A; λ2(A) to be the next smallest
eigenvalue; etc. (Ties do not matter for these definitions.) However, even though
with this convention the eigenvalues are continuous, they are not differentiable: this
is demonstrated by the matrix

A(α, β) =

[
α β

β −α

]
,

which has eigenvalues ±
√

α2 + β2.

11.4 Fast-slow systems

Recall problem from Chapter 1. More general system

εx′ = −x + bTy
y′ = xc + By

Coefficient matrix

A =

[ −ε−1 ε−1bT

c B

]

9



Compare two approaches:

1. Solve for x = bTy. Substitute into y-eqn, get reduced system

y′ = (B + cbT )y.

2. Full system.

Full system has one e-value approx equal to −ε−1. Show other eigenvalues are
same, modulo ε to some fractional power. In particular, reduced system is stable iff
full system is.

11.5 Exercises

Prove Corollary 11.3.3.

Suppose that A0 has a simple eigenvalue λ1, and let Λ(ε) be the eigenvalue of
A0 + εB that equals λ1 when ε = 0. In Exercise ?? we give a formula for calculating
dΛ/dε(0).
1. In case A0 has block-diagonal form, show derivative is 1,1-entry of B.
2. Suppose S−1A0S is block diagonal. Note that first col of S is eigenvector, say v,
of A0, first row of S−1 is eigenvector, say w, of AT . Argue that

dΛ/dε(0) = 〈w, Bv〉.
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