MA 532 Homework 7

S. Schecter

October 17, 2008

- 1. Consider the differential equation $\dot{x} = -\sqrt{|x|}$. Find all solutions that satisfy x(0) = 0. (This is similar to the initial value problem $\dot{x} = x^{\frac{2}{3}}$, x(0) = 0 that we discussed in class. Suggestion: when x < 0, |x| = -x.)
- 2. Let S be a set and let X be a Banach space with norm $\|\cdot\|_X$. Let B denote the set of all bounded functions from S to X. $(f: S \to X \text{ is in } B \text{ if there is a number } M \text{ such that for all } s \in S, \|f(s)\|_X \leq M$.) On B define $\|f\| = \sup_{s \in S} \|f(s)\|_X$. Show:
 - (a) B, with the appropriate operations, is a vector space. (The only questions are whether the sum of two elements in B is in B, and whether scalar multiples of elements of B are in B.)
 - (b) $\|\cdot\|$ is a norm on B.
 - (c) B with $\|\cdot\|$ is a Banach space.
- 3. Let $\phi : [a, b] \to \mathbb{R}$ be a continuous function, let $K : [a, b] \times [a, b] \to \mathbb{R}$ e a continuous function, and let $\lambda > 0$. Define

$$T: C^0([a, b,], \mathbb{R}) \to C^0([a, b,], \mathbb{R})$$

by

$$T(f)(x) = \lambda \int_{a}^{b} K(x, y) f(y) \, dy + \phi(x).$$

- (a) Let C be a number such that $|\phi(x)| \leq C$ for all $x \in [a, b]$. Let M be a number such that $K(x, y) \leq M$ for all $(x, y) \in [a, b] \times [a, b]$. Let $A = \{f \in C^0([a, b,], \mathbb{R}) : \|f\| \leq 2C\}$. Prove: If $\lambda < \frac{1}{2M(b-a)}$, then T maps A into itself and is a contraction.
- (b) Use the Contraction Mapping Theorem to conclude that if $\lambda < \frac{1}{2M(b-a)}$, then there is a continuous function $f:[a,b] \to \mathbb{R}$ such that for all $x \in [a,b]$,

$$f(x) = \lambda \int_{a}^{b} K(x, y) f(y) \, dy + \phi(x).$$

4. Let $\dot{x} = f(x)$ be a C^1 differential equation on \mathbb{R}^n . Assume that f is "odd": f(-x) = -f(x) for all $x \in \mathbb{R}^n$. Let $\phi(t)$ be the solution with $\phi(0) = a$. Use the existenceuniqueness theorem to prove that the unique solution of $\dot{x} = f(x)$ with $\psi(0) = -a$ is $\psi(t) = -\phi(t)$.