MA 532 Homework 7

S. Schecter

October 17, 2008

1. Consider the differential equation $\dot{x}=-\sqrt{|x|}$. Find all solutions that satisfy $x(0)=0$. (This is similar to the initial value problem $\dot{x}=x^{\frac{2}{3}}, x(0)=0$ that we discussed in class. Suggestion: when $x<0,|x|=-x$.)
2. Let S be a set and let X be a Banach space with norm $\|\cdot\|_{X}$. Let B denote the set of all bounded functions from S to $X .(f: S \rightarrow X$ is in B if there is a number M such that for all $s \in S,\|f(s)\|_{X} \leq M$.) On B define $\|f\|=\sup _{s \in S}\|f(s)\|_{X}$. Show:
(a) B, with the appropriate operations, is a vector space. (The only questions are whether the sum of two elements in B is in B, and whether scalar multiples of elements of B are in B.)
(b) $\|\cdot\|$ is a norm on B.
(c) B with $\|\cdot\|$ is a Banach space.
3. Let $\phi:[a, b] \rightarrow \mathbb{R}$ be a continuous function, let $K:[a, b] \times[a, b] \rightarrow \mathbb{R} \mathrm{e}$ a continuous function, and let $\lambda>0$. Define

$$
T: C^{0}([a, b,], \mathbb{R}) \rightarrow C^{0}([a, b,], \mathbb{R})
$$

by

$$
T(f)(x)=\lambda \int_{a}^{b} K(x, y) f(y) d y+\phi(x)
$$

(a) Let C be a number such that $|\phi(x)| \leq C$ for all $x \in[a, b]$. Let M be a number such that $K(x, y) \leq M$ for all $(x, y) \in[a, b] \times[a, b]$. Let $A=\left\{f \in C^{0}([a, b],, \mathbb{R})\right.$: $\|f\| \leq 2 C\}$. Prove: If $\lambda<\frac{1}{2 M(b-a)}$, then T maps A into itself and is a contraction.
(b) Use the Contraction Mapping Theorem to conclude that if $\lambda<\frac{1}{2 M(b-a)}$, then there is a continuous function $f:[a, b] \rightarrow \mathbb{R}$ such that for all $x \in[a, b]$,

$$
f(x)=\lambda \int_{a}^{b} K(x, y) f(y) d y+\phi(x)
$$

4. Let $\dot{x}=f(x)$ be a C^{1} differential equation on R^{n}. Assume that f is "odd": $f(-x)=$ $-f(x)$ for all $x \in R^{n}$. Let $\phi(t)$ be the solution with $\phi(0)=a$. Use the existenceuniqueness theorem to prove that the unique solution of $\dot{x}=f(x)$ with $\psi(0)=-a$ is $\psi(t)=-\phi(t)$.
