MA 532 Homework 6

S. Schecter

October 3, 2008

1. This problem is about the transpose of a matrix, A^{\top}. Recall that $(A+B)^{\top}=A^{\top}+B^{\top}$; $(c A)^{\top}=c A^{\top}$; and $\left(A_{1} A_{2} \ldots A_{k}\right)^{\top}=A_{k}^{\top} \ldots A_{2}^{\top} A_{1}^{\top}$ (in other words, the transpose of a product is the product, in reverse order, of the transposes).
Let A be an $n \times n$ matrix. A is skew-symmetric if $A^{\top}=-A$, and A is orthogonal if $A^{\top} A=I$.
(a) Using the infinite series definition, show that $\left(e^{t A}\right)^{\top}=e^{t A^{\top}}$.
(b) Using part (a), show: If S is skew-symmetric, then $e^{t S}$ is orthogonal.
(c) Let S be a 3×3 skew-symmetric matrix whose entries are not all 0 .
i. Show that the eigenvalues of S are 0 and $\pm \beta i, \beta>0$. Hint:

$$
S=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

ii. Let $x(t)$ be a solution of $\dot{x}=S x$. Show that $x\left(t+\frac{2 \pi}{\beta}\right)=x(t)$.
iii. Let v be an eigenvector of S for the eigenvalue 0 . Try to explain intuitively why multiplication by $e^{t S}$ is just rotation about the direction v, through an angle of size βt.
(d) Let v by a vector in R^{3} with $v \neq 0$. Consider the differential equation $\dot{x}=v \times x$. (The \times means cross product.)
i. Find a 3×3 matrix S such that $\dot{x}=S x$. Show that S is skew-symmetric.
ii. By (c), the eigenvalues of S are 0 and $\pm \beta i$. What is the eigenvector for the eigenvalue 0 ? How is β related to the length of v ?
2. Let A be an invertible $n \times n$ matrix, and let b be a vector in \mathbb{R}^{n}. Consider the differential equation

$$
\begin{equation*}
\dot{x}=A x+b, \quad x(0)=x_{0} . \tag{1}
\end{equation*}
$$

(a) Show that the change of coordinates $u=x+A^{-1} b$ converts this differential equation to

$$
\begin{equation*}
\dot{u}=A u, \quad u(0)=x_{0}+A^{-1} b . \tag{2}
\end{equation*}
$$

(b) The solution of (2) is of course $u=e^{t A} u(0)$. By undoing the change of coordinates find the solution of (1).
3. Let A be an $n \times n$ matrix, and let f be a continuous function from an interval J that contains 0 to \mathbb{R}^{n}. Consider the differential equation

$$
\begin{equation*}
\dot{x}=A x+f(t), \quad x(0)=x_{0} \tag{3}
\end{equation*}
$$

(a) Show that the solution of (3) is

$$
\begin{equation*}
x=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} f(s) d s \tag{4}
\end{equation*}
$$

Suggestion: Rewrite (3) as $\dot{x}-A x=f(t)$, multiply both sides by $e^{-t A}$, recognize the left-hand side as a derivative, and integrate.
(b) In (3), suppose A is invertible and $f(t)$ is a constant vector b. Try to rewrite (4) to equal your solution to 2 (b).
4. In the course of proving Floquet's Theorem, we showed that if C is an invertible $n \times n$ matrix, then there is a matrix L, possibly complex, such that $e^{L}=C$.
Another version of this result states that if C is a real invertible $n \times n$ matrix, then there is a real matrix L such that $e^{L}=C^{2}$. In this problem we will prove some steps in this result.
(a) Let

$$
J=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

with α and β real numbers and $\beta>0$. Let $r=\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}}$, and choose θ such that $\cos \theta=\alpha / r$ and $\sin \theta=\beta / r$. Then $r>0$ and

$$
J=r\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Let $K=\ln r I+\left(\begin{array}{cc}0 & \theta \\ -\theta & 0\end{array}\right)$. Show that $e^{K}=J$.
(b) Let

$$
C=\left(\begin{array}{ll}
J & I \\
0 & J
\end{array}\right)=\left(\begin{array}{ll}
J & 0 \\
0 & J
\end{array}\right)\left(\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
0 & J^{-1} \\
0 & 0
\end{array}\right)\right)
$$

Find a real matrix L such that $e^{L}=C$. (Part (a) and work we did in class when we proved Floquet's Theorem should help.)

