MA 532 Homework 6

S. Schecter

October 3, 2008

1. This problem is about the transpose of a matrix, A^{\top} . Recall that $(A+B)^{\top} = A^{\top} + B^{\top}$; $(cA)^{\top} = cA^{\top}$; and $(A_1A_2...A_k)^{\top} = A_k^{\top}...A_2^{\top}A_1^{\top}$ (in other words, the transpose of a product is the product, in reverse order, of the transposes).

Let A be an $n \times n$ matrix. A is skew-symmetric if $A^{\top} = -A$, and A is orthogonal if $A^{\top}A = I$.

- (a) Using the infinite series definition, show that $(e^{tA})^{\top} = e^{tA^{\top}}$.
- (b) Using part (a), show: If S is skew-symmetric, then e^{tS} is orthogonal.
- (c) Let S be a 3×3 skew-symmetric matrix whose entries are not all 0.
 - i. Show that the eigenvalues of S are 0 and $\pm \beta i$, $\beta > 0$. Hint:

$$S = \left(\begin{array}{ccc} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array} \right).$$

- ii. Let x(t) be a solution of $\dot{x} = Sx$. Show that $x(t + \frac{2\pi}{\beta}) = x(t)$.
- iii. Let v be an eigenvector of S for the eigenvalue 0. Try to explain intuitively why multiplication by e^{tS} is just rotation about the direction v, through an angle of size βt .
- (d) Let v by a vector in \mathbb{R}^3 with $v \neq 0$. Consider the differential equation $\dot{x} = v \times x$. (The \times means cross product.)
 - i. Find a 3×3 matrix S such that $\dot{x} = Sx$. Show that S is skew-symmetric.
 - ii. By (c), the eigenvalues of S are 0 and $\pm\beta i$. What is the eigenvector for the eigenvalue 0? How is β related to the length of v?
- 2. Let A be an invertible $n \times n$ matrix, and let b be a vector in \mathbb{R}^n . Consider the differential equation

$$\dot{x} = Ax + b, \quad x(0) = x_0.$$
 (1)

(a) Show that the change of coordinates $u = x + A^{-1}b$ converts this differential equation to

$$\dot{u} = Au, \quad u(0) = x_0 + A^{-1}b.$$
 (2)

(b) The solution of (2) is of course $u = e^{tA}u(0)$. By undoing the change of coordinates find the solution of (1).

3. Let A be an $n \times n$ matrix, and let f be a continuous function from an interval J that contains 0 to \mathbb{R}^n . Consider the differential equation

$$\dot{x} = Ax + f(t), \quad x(0) = x_0.$$
 (3)

(a) Show that the solution of (3) is

$$x = e^{tA}x_0 + \int_0^t e^{(t-s)A}f(s)\,ds.$$
 (4)

Suggestion: Rewrite (3) as $\dot{x} - Ax = f(t)$, multiply both sides by e^{-tA} , recognize the left-hand side as a derivative, and integrate.

- (b) In (3), suppose A is invertible and f(t) is a constant vector b. Try to rewrite (4) to equal your solution to 2(b).
- 4. In the course of proving Floquet's Theorem, we showed that if C is an invertible $n \times n$ matrix, then there is a matrix L, possibly complex, such that $e^L = C$.

Another version of this result states that if C is a real invertible $n \times n$ matrix, then there is a real matrix L such that $e^L = C^2$. In this problem we will prove some steps in this result.

(a) Let

$$J = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

with α and β real numbers and $\beta > 0$. Let $r = (\alpha^2 + \beta^2)^{\frac{1}{2}}$, and choose θ such that $\cos \theta = \alpha/r$ and $\sin \theta = \beta/r$. Then r > 0 and

$$J = r \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Let $K = \ln rI + \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$. Show that $e^K = J$.

(b) Let

$$C = \begin{pmatrix} J & I \\ 0 & J \end{pmatrix} = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix} \left(\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + \begin{pmatrix} 0 & J^{-1} \\ 0 & 0 \end{pmatrix} \right).$$

Find a real matrix L such that $e^{L} = C$. (Part (a) and work we did in class when we proved Floquet's Theorem should help.)