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1. Ajax Industries and Babar Industries both produce widgets. Let x1 be
the quantity produced by Ajax and let x2 be the quantity produced by
Babar. The price of widgets, in dollars, is

p = 100− 2(x1 + x2).

Thus the more widgets the two companies produce, the lower will be
the price. (This formula can produce a negative price; don’t worry
about it.)

It costs Ajax industries $3 to make each widget, and it costs Babar
Industries $2 to make each widget.

The revenue of each company is the price times the quantity it produces.
Profit is revenue minus cost of production. Thus the profit of Ajax
Industries is

π1 = px1 − 3x1 = 97x1 − 2x2

1
− 2x1x2,

and the profit of Babar Industries is

π2 = px2 − 2x2 = 98x2 − 2x1x2 − 2x2

2
.

We regard this as a two-person game. The players choose x1 and x2;
the payoffs are π1 and π2.

(a) Suppose the two players simultaneously choose the quantities they
produce. Find the Nash equilibrium.

(b) Suppose Ajax chooses x1 first, then Babar observes x1 and chooses
x2. Use backward induction to find Ajax’s best choice.

If your answer involves fractions of a widget, don’t worry about it.
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2. Sub Station has the only sub restaurant in Town A and the only sub
restaurant in Town B. The sub market in each town yields a profit of
$100K per year. Rival Sub Machine is considering opening a restaurant
in Town A in year 1. If it does, the two stores will split the profit from
the sub market there. However, Sub Machine will have to pay setup
costs for its new store. These costs are $25K in a store’s first year.

Sub Station fears that if Sub Machine is able to make a profit in Town
A, it will open a store in Town B the following year. Sub Station is
considering a price war: if Sub Machine opens a store in either town,
it will lower prices in that town, forcing Sub Machine to do the same,
to the point where profits from the sub market in that town drop to 0.

The following game tree is one way to represent the situation. It takes
into account net profits from Towns A and B in years 1 and 2, and it
assumes that if Sub Machine loses money in A it will not open a store
in B.

SM

(−25Κ, 200Κ)

SS

SM

(0, 400Κ)

open store in Adon't open store in A

price war in A no price war in A

open store in Bdon't open store in B

(75K, 300Κ)
price war in B no price war in B

(50Κ, 200Κ) (100Κ, 250Κ)

SS

Figure 1: SM is Sub Machine, SS is Sub Station. Sub Machine’s profits are
first, Sub Station’s profits are second.

For example, the entry (100K, 250K) in the table comes about as fol-
lows. If there are no price wars, Sub Machine makes net profits of $25K
in Town A in year 1, $50K in Town A in year 2, and $25K in Town B
in year 2, for a total of $100K. Sub Station makes profits of $50K in
Town A in year 1, $50K in Town A in year 2, $100K in Town B in year
1, and $50K in Town B in year 2, for a total of $250K.
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(a) Explain the entry (50K, 200K) in the table.

(b) Use backward induction to figure out what Sub Machine and Sub
Station should do. Be sure I can follow your reasoning.

3. Two countries each have one unit of wealth. Each chooses a fraction of
its wealth to devote to fighting the other. The country that devotes a
larger fraction of its wealth to fighting wins the fight. Its payoff is the
remaining wealth of both countries. The losing country’s payoff is zero.
If both counties devote the same fraction of their wealth to fighting,
the result is a tie. In this case, each country’s payoff is its remaining
wealth.

We consider this situation as a two-person game. The first country’s
strategy is a number s, 0 ≤ s ≤ 1, that represents the fraction of
its wealth it will devote to fighting. Similarly, the second country’s
strategy is a number t, 0 ≤ t ≤ 1, that represents the fraction of its
wealth it will devote to fighting. We assume the two countries choose
their strategies simultaneously.

The payoffs are:

• If s < t, Π1(s, t) = 0 and Π2(s, t) = 2− (s+ t).

• If s > t, Π1(s, t) = 2− (s+ t) and Π2(s, t) = 0.

• If s = t, Π1(s, t) = 1−s and Π2(s, t) = 1−t. Of course, 1−s = 1−t.

(a) Find all Nash equilbria with s < t. You may need to consider
separately the case t = 1.

(b) Find all Nash equilibria with s = t.

On both problems, make sure I can follow your reasoning. For each
strategy profile (s, t), you need to explain why it is or is not a Nash
equilibrium.
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4. In the nation of Slobovia, two companies make breakfast cereal. Break-
fast cereal can be made in five sweetness levels, numbered 1 to 5. Each
sweetness level is preferred by 20% of the population. If a person must
choose between two available sweetness levels, she chooses the one clos-
est to her preference, and chooses randomly if the available sweetness
level are equally close to her preference.

We model this situation as a two-player game. The players are the two
companies; each company’s strategy is the sweetness of the cereal it
produces; each company’s payoff is the percentage of the population
that chooses its cereal. We assume the companies choose simultane-
ously. The following matrix gives the payoffs.

Company 2

1 2 3 4 5

1 (50,50) (20,80) (30,70) (40,60) (50,50)
2 (80,20) (50,50) (40,60) (50,50) (60,40)

Company1 3 (70,30) (60,40) (50,50) (60,40) (70,30)
4 (60,40) (50,50) (40,60) (50,50) (80,20)
5 (50,50) (40,60) (30,70) (20,80) (50,50)

(a) Explain the five entries in the second column.

(b) Use iterated elimination of strictly dominated strategies to find a
Nash equilibrium. Be sure to make clear the order in which you
eliminate strategies, and which strategy dominates each strategy
that you eliminate.

5. Two drivers arrive at an intersection coming from opposite directions.
Each wants to turn left. Each has three strategies:

• T : turn.

• W : wait.

• C: contingent: turn if the other motorist seems to be waiting,
wait if the other motorist seems to be turning.

We assume the payoffs are as follows:

Driver 2

T W C

T (−5,−5) (0,−2) (0,−2)
Driver 1 W (−2, 0) (−3,−3) (−2, 0)

C (−2, 0) (0,−2) (−5,−5)
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(a) Use best response to find all pure strategy Nash equilibria.

(b) Find a mixed strategy Nash equilibrium in which both drivers use
all three strategies with positive probability. (Because of the sym-
metry of the problem, once you have found the three probabilities
for one driver, you may assume that the other driver uses the same
three probabilities.)

(c) Try to find a Nash equilibrium in which both drivers use strategies
T and C with positive probability, and strategy W with 0 proba-
bility. (Again, because of the symmetry of this problem, once you
have found the two probabilities for one driver, you may assume
that the other driver uses the same two probabilities.) Don’t forget
the final step in checking that you really have a Nash equilibrium.

6. In a certain town there are two sub shops, Sub Station and Sub Ma-
chine. Each can charge high prices or low prices. If both charge high
prices, both make $4K per week. If both charge low prices, both make
$3K per week. If one charges high prices and one charges low prices,
the one charging high prices makes nothing; the one charging low prices
makes $6K per week.

Suppose both shops use the following trigger strategy:

• Start by charging high prices. If the other shop charges high prices
in period k, then charge high prices in period k + 1. If the other
shop charges low prices in period k, then charge low prices in
period k + 1 and in every subsequent period.

The discount factor is δ, 0 < δ < 1.

Find a number δ0 such that if δ ≥ δ0, it is a Nash equilibrium for both
shops to use this trigger strategy.
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7. I often face the following problem. Something of mine does not work
properly (car, computer, body). I take it to an Expert (mechanic,
computer repair person, doctor). The problem may be major or minor.
The Expert studies the problem and diagnoses it as major or minor.
I then must decide whether to follow the Expert’s advice and do the
repair.

• Expert’s payoffs

– Bill for major repair: M .

– Bill for minor repair: m.

– Boost to reputation from making correct diagnosis: B.

• Customer’s payoffs

– Value of getting major problem fixed: V .

– Value of getting minor problem fixed: v.

– Bill for major repair: −M .

– Bill for minor repair: −m.

Half the time the problem is minor, and half the time it is major;
everyone knows this.

If the problem is major, a minor repair will not fix it. If the problem
is minor, either a minor or a major repair will fix it.

We assume V > M > v > m and B > m.

The following game tree illustrates the situation.

N

(Μ+B,V−M)

major problem
probability = 1/2

E E
major minor

repair no

C CC C

(B,0) (m,−m) (0,0) (m+B,v−m)

minor problem
probability = 1/2

major minor

repair no repair no
repair no

(Μ,v−M) (0,0) (B,0)

Figure 2: N = Nature, E = Expert, C = Customer. The Expert diagnoses
a major or a minor problem; then the Customer decides whether to do the
repair or not. The first payoff is to the Expert, the second is to the Customer.
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The Customer has four strategies:

• Rr: If Expert says problem is major, repair; if Expert says prob-
lem is minor, repair.

• Rn: If Expert says problem is major, repair; if Expert says prob-
lem is minor, do not repair.

• Nr: If Expert says problem is major, do not repair; if Expert says
problem is minor, repair.

• Nn: If Expert says problem is major, do not repair; if Expert says
problem is minor, do not repair.

(a) Explain why the Expert should always diagnose a major problem
as major.

(b) Because of part (a), we assume the Expert always diagnoses a
major problem as major. Therefore the Expert only has two pure
strategies:

• D: Dishonest: diagnose every problem as major.

• H : Honest: if the problem is major, diagnose it as major; if
the problem is minor, diagnose it as minor.

Complete the following 2 × 4 payoff matrix, showing expected
payoffs to both Expert and Customer.

Customer

Rr Rn Nr Nn

Expert Dishonest

Honest
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8. When two little monkeys encounter a warifruit tree, one of them may
climb up and knock down a fruit. Then both monkeys eat it. The
monkey that climbs the tree gets less to eat (because the other monkey
has a head start) and incurs an energy cost.

The payoffs are as follows:

Monkey 2

climb wait

Monkey 1 climb (2, 2) (1, 4)
wait (4, 1) (0, 0)

(a) Find the pure strategy Nash equilibria. Are there any that are
symmetric?

(b) Find all mixed strategy Nash equilibria. (There is one and it is
symmetric.)

(c) Check whether your mixed strategy Nash equilibrium gives an
evolutionarily stable state.

(d) Derive the replicator system and reduce it to a single differential
equation.

(e) Find all equilibria of your differential equation.

(f) Draw the phase portrait of your differential equation.

9. When two big monkeys encounter a warifruit tree, the situation is dif-
ferent. For one thing, if both monkeys try to climb the tree, they will
get in each other’s way and will fall down. On the other hand, two big
monkeys are strong enough to shake the tree together and knock down
a fruit. However, if one monkey climbs and one shakes, the shaking pre-
vents the first monkey from successfully climbing, but is not sufficient
to knock down a fruit.

The payoffs are as follows:

Monkey 2

climb wait shake

climb (0, 0) (1, 3) (0, 0)
Monkey 1 wait (3, 1) (0, 0) (0, 0)

shake (0, 0) (0, 0) (2, 2)

(a) Find the pure strategy Nash equilibria. Are there any that are
symmetric?
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(b) Denote a population type by σ = pc+ qw+ rs with p ≥ 0, q ≥ 0,
r ≥ 0, and p+ q+ r = 1. Show that the replicator equation, using
the variables p and q only, is

ṗ = (q − h(p, q))p,

q̇ = (3p− h(p, q))q,

with h(p, q) = 4pq + 2(1− p− q)2.

(c) We study this differential equation on the following triangle.

p

q

1

1

p+q=1

Find three equilibria in the triangle that lie on the line p+ q = 1.

(d) Compute the eigenvalues of the linearization at the equilibrium
(0, 0) and describe its type (attractor, repeller, saddle).

(e) The phase portrait is shown below. What does it tell you?

p

q

1

1
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