MA 426/591M Test 2

S. Schecter

November 15, 2002

1. Let

$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Using the definition of derivative, prove: $Df(0,0) = [0 \ 0]$. Hint: $x^2 \le x^2 + y^2$.

2. Suppose $f : \mathbb{R}^3 \to \mathbb{R}^2$ is

$$f(x_1, x_2, x_3) = (x_1^2 x_2 x_3, x_2^2 + x_3^2),$$

and $g: \mathbb{R} \to \mathbb{R}^3$ is

$$g(t) = (2t+1, e^t, 4).$$

- (a) Calculate $Df(x_1, x_2, x_3)$ and Dg(t).
- (b) Using the chain rule that we learned this semester, which involves multiplication of matrices, calculate D(f ∘ g)(0).
- 3. Consider the system of equations

$$(x^{2} + u^{2})(y^{2} + v^{2}) = 1,$$

 $x \cos u + y \sin v = 1.$

- (a) Show that the Implicit Function Theorem implies we can solve for (x, y) in terms of (u, v) near (x, y, u, v) = (1, 1, 0, 0).
- (b) Compute the matrix of partial derivatives of (x, y) with respect to (u, v) at that point.

Do two of the following three problems.

- (4) Prove: If $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 , then f is continuous at x_0 .
- (5) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a C^2 function, Df(0) = 0, and the bilinear form associated with $D^2f(0)$ is negative definite. Prove that f has a local maximum at x = 0. (In your proof you may use Taylor's formula and the lemma that says: if B is a negative definite bilinear form, then there is a constant m > 0 such that $B(x, x) \leq -m ||x||^2$ for all $x \in \mathbb{R}^n$).
- (6) Let $A \subset \mathbb{R}^n$ be convex. (This means that if x and y are in A, then the entire line segment that joins them is in A.) Let $f: A \to \mathbb{R}^m$ be C^1 . Suppose there is a number M > 0 such that for all $x \in A$ and all $z \in \mathbb{R}^n$, $\|Df(x)z\| \leq M\|z\|$. Prove: If $x \in A$ and $y \in A$ then $\|f(x) f(y)\| \leq M\|y x\|$. Suggestions: (1) Let h(t) = f(x + t(y x)). (2) You may use the following: If $g: [a, b] \to \mathbb{R}^m$ is continuous, then $\|\int_a^b g(t)dt\| \leq \int_a^b \|g(t)\|dt$.