MA 426/591M Test 2

S. Schecter

November 15, 2002

1. Let

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Using the definition of derivative, prove: $D f(0,0)=\left[\begin{array}{ll}0 & 0\end{array}\right]$. Hint: $x^{2} \leq x^{2}+y^{2}$.
2. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2} x_{2} x_{3}, x_{2}^{2}+x_{3}^{2}\right)
$$

and $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is

$$
g(t)=\left(2 t+1, e^{t}, 4\right)
$$

(a) Calculate $D f\left(x_{1}, x_{2}, x_{3}\right)$ and $D g(t)$.
(b) Using the chain rule that we learned this semester, which involves multiplication of matrices, calculate $D(f \circ g)(0)$.
3. Consider the system of equations

$$
\begin{gathered}
\left(x^{2}+u^{2}\right)\left(y^{2}+v^{2}\right)=1 \\
x \cos u+y \sin v=1
\end{gathered}
$$

(a) Show that the Implicit Function Theorem implies we can solve for (x, y) in terms of (u, v) near $(x, y, u, v)=(1,1,0,0)$.
(b) Compute the matrix of partial derivatives of (x, y) with respect to (u, v) at that point.

Do two of the following three problems.
(4) Prove: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at x_{0}, then f is continuous at x_{0}.
(5) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{2} function, $D f(0)=0$, and the bilinear form associated with $D^{2} f(0)$ is negative definite. Prove that f has a local maximum at $x=0$. (In your proof you may use Taylor's formula and the lemma that says: if B is a negative definite bilinear form, then there is a constant $m>0$ such that $B(x, x) \leq-m\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$).
(6) Let $A \subset \mathbb{R}^{n}$ be convex. (This means that if x and y are in A, then the entire line segment that joins them is in A.) Let $f: A \rightarrow \mathbb{R}^{m}$ be C^{1}. Suppose there is a number $M>0$ such that for all $x \in A$ and all $z \in \mathbb{R}^{n},\|D f(x) z\| \leq M\|z\|$. Prove: If $x \in A$ and $y \in A$ then $\|f(x)-f(y)\| \leq M\|y-x\|$. Suggestions: (1) Let $h(t)=f(x+t(y-x))$. (2) You may use the following: If $g:[a, b] \rightarrow \mathbb{R}^{m}$ is continuous, then $\left\|\int_{a}^{b} g(t) d t\right\| \leq$ $\int_{a}^{b}\|g(t)\| d t$.

