MA 426/591M Test 1

S. Schecter

October 4, 2002

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. For each of the following questions, if you answer "yes", give a brief explanation; if you answer "no", give an example that shows "no" is the correct answer.
 - (a) Is $\{x \in \mathbb{R} : f(x) = 0\}$ necessarily a closed set?
 - (b) Is $\{x \in \mathbb{R} : f(x) = 0\}$ necessarily a compact set?
 - (c) Is $\{x \in \mathbb{R} : f(x) = 0\}$ necessarily a path connected set?
 - (d) Is $f([0,\infty))$ necessarily a closed set?
 - (e) Is f([0,1]) necessarily a closed set?
 - (f) Is $f([0,\infty))$ necessarily a path connected set?

Do *four* of the following five problems. *Do not do all five problems*. If you do, I'll just grade the first four that you attempt.

- 2. Let $A = \{x_1, x_2, \ldots, x_N\}$ be a finite set of points in \mathbb{R}^n . Prove that A is closed by showing that the complement is open.
- 3. Let A be a subset of \mathbb{R}^n . Let B be the set of all accumulation points of A. Prove that B is closed. Suggestion: Let x be an accumulation point of B. Show that $x \in B$.
- 4. Assume that $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous, *i.e.*, f satisfies the ϵ - δ definition of continuity at every point of \mathbb{R}^n . Let $x_k \to x$ in \mathbb{R}^n . Prove: $f(x_k) \to f(x)$ in \mathbb{R}^m .
- 5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function. Assume that for every open set $U \subset \mathbb{R}^m$, $f^{-1}(U)$ is open. Prove that f is continuous.
- 6. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be continuous and let $K \subset \mathbb{R}^n$ be compact. Prove that f(K) is compact by showing that every open cover of f(K) has a finite subcover.