MA 426/591M Test 1

S. Schecter

October 4, 2002

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. For each of the following questions, if you answer "yes", give a brief explanation; if you answer "no", give an example that shows "no" is the correct answer.
(a) Is $\{x \in \mathbb{R}: f(x)=0\}$ necessarily a closed set?
(b) Is $\{x \in \mathbb{R}: f(x)=0\}$ necessarily a compact set?
(c) Is $\{x \in \mathbb{R}: f(x)=0\}$ necessarily a path connected set?
(d) Is $f([0, \infty))$ necessarily a closed set?
(e) Is $f([0,1])$ necessarily a closed set?
(f) Is $f([0, \infty))$ necessarily a path connected set?

Do four of the following five problems. Do not do all five problems. If you do, I'll just grade the first four that you attempt.
2. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be a finite set of points in \mathbb{R}^{n}. Prove that A is closed by showing that the complement is open.
3. Let A be a subset of \mathbb{R}^{n}. Let B be the set of all accumulation points of A. Prove that B is closed. Suggestion: Let x be an accumulation point of B. Show that $x \in B$.
4. Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous, i.e., f satisfies the $\epsilon-\delta$ definition of continuity at every point of \mathbb{R}^{n}. Let $x_{k} \rightarrow x$ in \mathbb{R}^{n}. Prove: $f\left(x_{k}\right) \rightarrow f(x)$ in \mathbb{R}^{m}.
5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. Assume that for every open set $U \subset R^{m}, f^{-1}(U)$ is open. Prove that f is continuous.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuous and let $K \subset \mathbb{R}^{n}$ be compact. Prove that $f(K)$ is compact by showing that every open cover of $f(K)$ has a finite subcover.

