MA 426/591M Homework

S. Schecter

Assigned March 21, 2003, due March 28, 2003

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show f is continuous at $(0,0)$. Suggestion: $|x| \leq \sqrt{x^{2}+y^{2}}$ and $|y| \leq \sqrt{x^{2}+y^{2}}$.
(b) Find all directional derivatives of f at $(0,0)$ that exist.
(c) Is f differentiable at $(0,0)$? Justify your answer.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{6}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that all directional derivatives of f at $(0,0)$ exist.
(b) Show that f not continuous at $(0,0)$. Suggestion: Look at the values of f on the curve $\phi(t)=\left(t, t^{3}\right)$, which goes through the origin.
3. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is differentiable at $(0,0)$ and $D f(0,0)=0$.
(b) Calculate $\frac{\partial f}{\partial x}(0, y)$. In other words, at each point on the y-axis, find the partial derivative of f with respect to x. (Unless $y=0$, you can just do this using the quotient rule.)
(c) Calculate $\frac{\partial f}{\partial y}(x, 0)$. In other words, at each point on the x-axis, find the partial derivative of f with respect to y. (Unless $x=0$, you can just do this using the quotient rule.)
(d) Using your answers to parts (b) and (c) show that

$$
\frac{\partial^{2} f}{\partial x \partial y}(0,0) \neq \frac{\partial^{2} f}{\partial y \partial x}(0,0)
$$

(e) For this function, $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ exist at every point (x, y). Do you think that they are continuous at $(0,0)$? Hint: Equality of mixed partials.
4. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called homogeneous of degree n if for all (x, y) in \mathbb{R}^{2} and for all $t>0$,

$$
f(t x, t y)=t^{n} f(x, y)
$$

(a) Show that the functions $f(x, y)=\frac{x y}{x+y}, f(x, y)=\frac{x}{x^{2}+y^{2}}$, and $f(x, y)=x^{\frac{1}{3}}+x^{-\frac{2}{3}} y$ are all homogeneous. What are the degrees?
(b) Prove Euler's Theorem: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is homogeneous of degree n, then at any point (x, y) where f is differentiable,

$$
x f_{x}(x, y)+y f_{y}(x, y)=n f(x, y) .
$$

Suggestion. Fix a point (x, y) where f is differentiable, and define $\phi: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\phi(t)=(t x, t y)$. (Remember, (x, y) is fixed.) Consider the composition $f \circ \phi(t)=f(t x, t y)$. Calculate the derivative of $f \circ \phi$ at $t=1$ two different ways, one with the chain rule, one without the chain rule.

