MA 426-001/591M-001 Homework

S. Schecter

Assigned January 14, 2003, Due January 17, 2003

- 1. Prove that the standard inner product on \mathbb{R}^n satisfies properties (I3) and (I4) of inner products.
- 2. Suppose x and y are vectors in \mathbb{R}^n , $x \neq 0$, $y \neq 0$, and $\langle x, y \rangle = ||x|| ||y||$. Prove that there is a number $\alpha > 0$ such that $x = \alpha y$. Suggestion: Look carefully at the proof of the Cauchy-Schwartz inequality.
- 3. On \mathbb{R}^n , define ||x|| to be $\max_{1 \le i \le n} |x_i|$. Prove that $|| \cdot ||$ is a norm. In other words, show that $|| \cdot ||$ satisfies properties (N1)–(N4). ($|| \cdot ||$ is called the "sup norm.")
- 4. Let S be any set. For any x and y in S, define d(x, y) to be 0 if x = y and 1 if $x \neq y$. Prove that d is a metric. In other words, show that d satisfies properties (D1)–(D4). (d is called the "discrete metric."