MA 425-003 Test 1

S. Schecter

February 21, 2001

1. Group 1.

Do four problem from Group 1. Give careful proofs from first principles.

- (a) Let S be a nonempty subset of \mathbb{R} that is bounded above. Let $u = \sup S$. Let a > 0. Let $aS = \{as : s \in S\}$. Show that $\sup aS = au$.
- (b) Let $x_n = 2 + \frac{(-1)^n}{n^2}$. Prove that $x_n \to 2$.
- (c) Let (x_n) be a sequence such that $x_n \to x$. Suppose x > a. Prove that there is a number N such that $x_n > a$ for all n > N.
- (d) Let (x_n) be a sequence such that (1) $x_n > a$ for every n and (2) $x_n \to x$. Prove that $x \ge a$.
- (e) Prove: If (x_n) is a bounded increasing sequence and $u = \sup\{x_n : n \in \mathbb{N}\}$, then $x_n \to u$.
- 2. Group 2.

Answer *all* questions in Group 2.

- (a) Let (x_n) be a sequence such that (1) $x_n > a$ for every n and (2) $x_n \to x$. Is x > a?
 - i. Yes.
 - ii. No.
 - iii. Maybe.

- (b) Let (x_n) be a monotone increasing sequence. Does (x_n) converge?
 - i. Yes.
 - ii. No.
 - iii. Maybe.
- (c) Let (x_n) be a bounded sequence. Does (x_n) converge?
 - i. Yes.
 - ii. No.
 - iii. Maybe.
- (d) Suppose (x_n) converges and (x_{n_k}) is a subsequence of (x_n) . Does (x_{n_k}) converge?
 - i. Yes.
 - ii. No.
 - iii. Maybe.
- (e) Let (x_n) be a sequence such that (1) $1 < x_n < 2$ for every n and (2) $x_{n+1} < x_n$ for every n. Does $x_n \to 1$?
 - i. Yes.
 - ii. No.
 - iii. Maybe.