MA 425-002 Practice Problems for Test 2

S. Schecter

March 21, 2005

Give proofs from first principles.

1. Suppose $\left(x_{n}\right)$ is a Cauchy sequence. Without using the fact that a Cauchy sequence converges, prove that $\left(x_{n}\right)$ is bounded.
2. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences. Assume
(a) $\lim x_{n}=\infty$.
(b) There is a number $M>0$ such that $0<y_{n}<M$ for every n.

Prove that

$$
\lim \frac{x_{n}}{y_{n}}=\infty
$$

3. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 2 x & \text { if } x \text { is irrational }\end{cases}
$$

Prove that $\lim _{x \rightarrow 0} f(x)=0$.
4. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be functions. Suppose $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=L$, where L is a finite number. Prove that $\lim _{x \rightarrow a} f(x)+g(x)=\infty$.
5. Let $f: A \rightarrow \mathbb{R}$ be a function and let $c \in A$. Assume that f is continuous at $x=c$. Suppose that $f(c)=d$ and $d>0$. Prove that there is a number $\delta>0$ such that if $x \in A$ and $|x-c|<\delta$ then $f(x)>\frac{2}{3} d$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Prove that $g \circ f$ is continuous.
7. Let f be a continuous function on the interval $(0,1)$ such that $f(x)>0$ for all x in $(0,1)$. Is it possible that

$$
\inf _{x \in(0,1)} f(x)=0 ?
$$

(a) Yes.
(b) No.
8. Let f be a continuous function on the interval $[0,1]$ such that $f(x)>0$ for all x in $[0,1]$. Is it possible that

$$
\inf _{x \in(0,1)} f(x)=0 ?
$$

(a) Yes.
(b) No.
9. Let $f:(1, \infty) \rightarrow \mathbb{R}$ be $f(x)=\frac{1+x}{2 x}$. Prove that f is uniformly continuous.
10. Let $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ be uniformly continuous functions. Prove that $f+g$ is uniformly continuous.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that for every $x,-x^{2} \leq f(x) \leq x^{2}$. Prove that f is differentiable at 0 , and $f^{\prime}(0)=0$. (Notice that $f(0)$ has to be 0 . Be careful with this problem. If you divide by x when x is negative, inequalities reverse.)
12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Assume that f^{\prime} is a strictly increasing function on $[a, b]$. (This means: If $x_{1} \in[a, b], x_{2} \in[a, b]$, and $x_{1}<x_{2}$, then $f^{\prime}\left(x_{1}\right)<$ $f^{\prime}\left(x_{2}\right)$.) Prove: $f(b)-f(a)-f^{\prime}(a)(b-a)>0$. Hint: What does the Mean Value Theorem tell you about $f(b)-f(a)$?

