MA 425-002 Final Exam

S. Schecter

December 7, 2005

Do eight problems. The answers to problems $1,3,4,5$ and 8 should include the expression, "Let $\epsilon>0$."

1. Let $x_{n}=\frac{2 n^{2}}{1+n^{2}}$. Prove that $x_{n} \rightarrow 2$.
2. Let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightarrow x$. Suppose $x<0$. Prove that there is a number N such that $x_{n}<0$ for all $n>N$.
3. Prove: If $\left(x_{n}\right)$ is a bounded decreasing sequence and $u=\inf \left\{x_{n}: n \in\right.$ $\mathbb{N}\}$, then $x_{n} \rightarrow u$.
4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ and $g:(0, \infty) \rightarrow \mathbb{R}$ be functions. Assume:
(a) $f(x)>0$ for all x.
(b) $\lim _{x \rightarrow 0} f(x)=\infty$.
(c) g is a bounded function.

Prove that $\lim _{x \rightarrow 0} \frac{g(x)}{f(x)}=0$.
5. Show that the function $f(x)=\frac{1+x}{x^{2}}$ is uniformly continuous on the interval $1 \leq x<\infty$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that for every $x,-x^{2} \leq f(x) \leq x^{2}$. Prove that f is differentiable at 0 , and $f^{\prime}(0)=0$. (Notice that $f(0)$ has to be 0 . Be careful with this problem. If you divide by x when x is negative, inequalities reverse.)
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Assume that f^{\prime} is a strictly increasing function on $[a, b]$. (This means: If $x_{1} \in[a, b]$, $x_{2} \in[a, b]$, and $x_{1}<x_{2}$, then $f^{\prime}\left(x_{1}\right)<f^{\prime}\left(x_{2}\right)$.) Prove: $f(b)-f(a)-$ $f^{\prime}(a)(b-a)>0$. Hint: What does the Mean Value Theorem tell you about $f(b)-f(a)$?
8. Let

$$
\begin{aligned}
f_{n}(x) & =\frac{1+n x^{2}}{n x}, \quad 0<x<\infty \\
f(x) & =x, \quad 0<x<\infty
\end{aligned}
$$

Show that if $a>0$, then $f_{n} \rightarrow f$ uniformly on the interval $a \leq x<\infty$.
9. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, and let $c \in(a, b)$. Assume:

- $f(x) \geq 0$ for all $x \in[a, b]$.
- $f(c)>0$.

Show that $\int_{a}^{b} f>0$.
10. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be positive sequences. Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge. Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

