MA 425-002 Final Exam

S. Schecter

December 7, 2005

Do eight problems. The answers to problems 1, 3, 4, 5 and 8 should include the expression, "Let $\epsilon > 0$."

- 1. Let $x_n = \frac{2n^2}{1+n^2}$. Prove that $x_n \to 2$.
- 2. Let (x_n) be a sequence such that $x_n \to x$. Suppose x < 0. Prove that there is a number N such that $x_n < 0$ for all n > N.
- 3. Prove: If (x_n) is a bounded decreasing sequence and $u = \inf\{x_n : n \in \mathbb{N}\}$, then $x_n \to u$.
- 4. Let $f: (0, \infty) \to \mathbb{R}$ and $g: (0, \infty) \to \mathbb{R}$ be functions. Assume:
 - (a) f(x) > 0 for all x.
 - (b) $\lim_{x\to 0} f(x) = \infty$.
 - (c) g is a bounded function.

Prove that $\lim_{x\to 0} \frac{g(x)}{f(x)} = 0.$

- 5. Show that the function $f(x) = \frac{1+x}{x^2}$ is uniformly continuous on the interval $1 \le x < \infty$.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that for every $x, -x^2 \leq f(x) \leq x^2$. Prove that f is differentiable at 0, and f'(0) = 0. (Notice that f(0) has to be 0. Be careful with this problem. If you divide by x when x is negative, inequalities reverse.)

- 7. Let $f : [a, b] \to \mathbb{R}$ be a differentiable function. Assume that f' is a strictly increasing function on [a, b]. (This means: If $x_1 \in [a, b]$, $x_2 \in [a, b]$, and $x_1 < x_2$, then $f'(x_1) < f'(x_2)$.) Prove: f(b) - f(a) - f'(a)(b-a) > 0. Hint: What does the Mean Value Theorem tell you about f(b) - f(a)?
- 8. Let

$$f_n(x) = \frac{1 + nx^2}{nx}, \quad 0 < x < \infty,$$

$$f(x) = x, \quad 0 < x < \infty.$$

Show that if a > 0, then $f_n \to f$ uniformly on the interval $a \le x < \infty$. 9. Let $f : [a, b] \to \mathbb{R}$ be a continuous function, and let $c \in (a, b)$. Assume:

- $f(x) \ge 0$ for all $x \in [a, b]$.
- f(c) > 0.

Show that $\int_a^b f > 0$.

10. Let (a_n) and (b_n) be positive sequences. Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges.