MA 425-002 Homework

S. Schecter

January 13, 2006

In class we stated the algebraic properties of \mathbb{R}, which are on p .23 of the text, and we defined $a-b$ and $\frac{a}{b}$. Then we proved
(a) If $a+b=0$, then $b=-a$.
(b) For any real number $a, a \cdot 0=0 \cdot a=0$.

In doing the following problems, you can use the algebraic properties of \mathbb{R}; you can use results (a) and (b) above; and when you get to problem n, you can use problems $1, \ldots, n-1$.

1. Prove: if $a+x=b$, then $x=b-a$. (Suggestion: assume $a+x=b$ and add $-a$ to both sides.)
2. Prove: if $a \cdot b=1$, then $b=\frac{1}{a}$. (Suggestion: assume $a \cdot b=1$. Use (b) to show that $a \neq 0$. Then multiply both sides by $\frac{1}{a}$.)
3. Prove: if $a \neq 0$ and $a \cdot x=b$, then $x=\frac{b}{a}$.
4. Prove: if $a \neq 0$ and $b \neq 0$, then $\frac{1}{a b}=\frac{1}{a} \cdot \frac{1}{b}$. (Suggestion: Show that $a b \cdot\left(\frac{1}{a} \cdot \frac{1}{b}\right)=1$. Then use (2).)
5. Prove: $-(-b)=b$. (Suggestion: we know that $(-b)+b=0$. Use result (a).)
6. Prove: $(-1) \cdot a=-a$. (Suggestion: show that $a+(-1) \cdot a=0$. Then use result (a).)
7. Prove: if $a \cdot b=0$ then $a=0$ or $b=0$. (Here is a suggestion for a proof by contradiction. Assume $a \cdot b=0$ and it is not true that $a=0$ or $b=0$. Then $a \cdot b=0, a \neq 0$, and $b \neq 0$. Derive a contradiction by showing that the first two of these statements imply that $b=0$.)
