MA 425-002 Homework

S. Schecter

January 13, 2006

In class we stated the algebraic properties of \mathbb{R} , which are on p. 23 of the text, and we defined a - b and $\frac{a}{b}$. Then we proved

(a) If a + b = 0, then b = -a.

(b) For any real number $a, a \cdot 0 = 0 \cdot a = 0$.

In doing the following problems, you can use the algebraic properties of \mathbb{R} ; you can use results (a) and (b) above; and when you get to problem n, you can use problems $1, \ldots, n-1$.

- 1. Prove: if a + x = b, then x = b a. (Suggestion: assume a + x = b and add -a to both sides.)
- 2. Prove: if $a \cdot b = 1$, then $b = \frac{1}{a}$. (Suggestion: assume $a \cdot b = 1$. Use (b) to show that $a \neq 0$. Then multiply both sides by $\frac{1}{a}$.)
- 3. Prove: if $a \neq 0$ and $a \cdot x = b$, then $x = \frac{b}{a}$.
- 4. Prove: if $a \neq 0$ and $b \neq 0$, then $\frac{1}{ab} = \frac{1}{a} \cdot \frac{1}{b}$. (Suggestion: Show that $ab \cdot (\frac{1}{a} \cdot \frac{1}{b}) = 1$. Then use (2).)
- 5. Prove: -(-b) = b. (Suggestion: we know that (-b) + b = 0. Use result (a).)
- 6. Prove: $(-1) \cdot a = -a$. (Suggestion: show that $a + (-1) \cdot a = 0$. Then use result (a).)
- 7. Prove: if $a \cdot b = 0$ then a = 0 or b = 0. (Here is a suggestion for a proof by contradiction. Assume $a \cdot b = 0$ and it is not true that a = 0 or b = 0. Then $a \cdot b = 0$, $a \neq 0$, and $b \neq 0$. Derive a contradiction by showing that the first two of these statements imply that b = 0.)