MA 341-007 Test 1 Review Questions

S. Schecter

Corrected February 8, 2012

Warning: Not all topics are covered!

- 1. Translate into a differential equation: Sec. 1.1 problems 15 and 16.
- 2. Checking whether something is a solution of a differential equation: Sec. 1.2 problems 4 and 12.
- 3. Existence-uniqueness theorem: Sec. 1.2 problem 28. Also: What if the initial condition is y(1) = 2?
- 4. Direction fields: Sec. 1.3 problem 17 (problem 16 in the 5th edition). Use the method of isoclines to sketch the direction field in the region x > 0. Then try to sketch the solutions with y(1) = 1 and y(1) = 5. For these two solutions, as $x \to \infty$, what do you think y approaches?
- 5. Euler's method: Sec. 1.4 problem 6 (problem 5 in the 5th edition). Just do the points x = 1.2, 1.4. Don't round.
- 6. Separable equations: Sec. 2.2 problem 26.
- 7. Linear equations: Sec. 2.3 problems 14, 15.
- 8. Exact equations: Sec. 2.4 problem 12.
- 9. Mixing: Sec. 3.2 problem 2.
- 10. Mechanics: Sec. 3.4 problem 6. First draw your coordinate axis!

Answers:

1. 16:
$$\frac{dA}{dt} = kA^2$$
.

- 2. 4 yes, 12 yes. Just calculate $\frac{dy}{dx}$ and plug into the differential equation.
- 3. No, yes. Look at $\frac{\partial f}{\partial y}$ at the two points.
- 4. The line $x+2y=-\frac{1}{2}$ is a solution. Solutions above the line approach the line as $x\to -\infty$ and have $y\to \infty$ as x increases. Solutions below the line approach the line as $x\to -\infty$ and have $y\to -\infty$ as x increases.
- 5. Approximation from Euler's method: At x = 1.2, y = 1.400; at x = 1.4, y = 1.960.

6.
$$y = \left(1 - \frac{1}{2}\ln(1+x)\right)^2$$

7. 14:
$$y = x^{-3} \sin x - x^{-2} \cos x - \frac{3}{5}x^2 + cx^{-3}$$

$$8. \ e^x \sin y - x^3 + y^{\frac{1}{3}} = C$$

9.
$$x = 2.5 - 2.0e^{-.12t}$$
; $t = \frac{25}{3} \ln 2 = 5.776$.

10. If x increases as you go up, $v = -4.9 + 24.9e^{-2t}$.

If the initial position of the object is x = 0, $x = -4.9t - 12.45e^{-2t} + 12.45$.

Then x = -100 when (after simplifying) $22.95 = t + 2.54e^{-2t}$.

Solution according to Maple: t = 22.95. (Not surprising.)