MA 341-007 Test 1 Review Questions

S. Schecter

Corrected February 8, 2012

Warning: Not all topics are covered!

1. Translate into a differential equation: Sec. 1.1 problems 15 and 16.
2. Checking whether something is a solution of a differential equation: Sec. 1.2 problems 4 and 12.
3. Existence-uniqueness theorem: Sec. 1.2 problem 28. Also: What if the initial condition is $y(1)=2$?
4. Direction fields: Sec. 1.3 problem 17 (problem 16 in the 5th edition). Use the method of isoclines to sketch the direction field in the region $x>0$. Then try to sketch the solutions with $y(1)=1$ and $y(1)=5$. For these two solutions, as $x \rightarrow \infty$, what do you think y approaches?
5. Euler's method: Sec. 1.4 problem 6 (problem 5 in the 5 th edition). Just do the points $x=1.2,1.4$. Don't round.
6. Separable equations: Sec. 2.2 problem 26.
7. Linear equations: Sec. 2.3 problems 14, 15.
8. Exact equations: Sec. 2.4 problem 12.
9. Mixing: Sec. 3.2 problem 2.
10. Mechanics: Sec. 3.4 problem 6. First draw your coordinate axis!

Answers:

1. $16: \frac{d A}{d t}=k A^{2}$.
2. 4 yes, 12 yes. Just calculate $\frac{d y}{d x}$ and plug into the differential equation.
3. No, yes. Look at $\frac{\partial f}{\partial y}$ at the two points.
4. The line $x+2 y=-\frac{1}{2}$ is a solution. Solutions above the line approach the line as $x \rightarrow-\infty$ and have $y \rightarrow \infty$ as x increases. Solutions below the line approach the line as $x \rightarrow-\infty$ and have $y \rightarrow-\infty$ as x increases.
5. Approximation from Euler's method: At $x=1.2, y=1.400$; at $x=1.4, y=1.960$.
6. $y=\left(1-\frac{1}{2} \ln (1+x)\right)^{2}$
7. 14: $y=x^{-3} \sin x-x^{-2} \cos x-\frac{3}{5} x^{2}+c x^{-3}$
8. $e^{x} \sin y-x^{3}+y^{\frac{1}{3}}=C$
9. $x=2.5-2.0 e^{-.12 t} ; \mathrm{t}=\frac{25}{3} \ln 2=5.776$.
10. If x increases as you go up, $v=-4.9+24.9 e^{-2 t}$. If the initial position of the object is $x=0, x=-4.9 t-12.45 e^{-2 t}+12.45$.
Then $x=-100$ when (after simplifying) $22.95=t+2.54 e^{-2 t}$.
Solution according to Maple: $t=22.95$. (Not surprising.)
