MA 341-007 Test 1 Review Questions

S. Schecter

February 1, 2011

Warning: Not all topics are covered!

1. Translate into a differential equation: Sec. 1.1 problems 15 and 16.
2. Checking whether something is a solution of a differential equation: Sec. 1.2 problems 8 and 10.
3. Existence-uniqueness theorem: Sec. 1.2 problem 28. Also: What if the initial condition is $y(1)=2$?
4. Direction fields: Sec. 1.3 problem 17. Use the method of isoclines to sketch the direction field in the region $x>0$. Then try to sketch the solutions with $y(1)=1$ and $y(1)=5$. For these two solutions, as $x \rightarrow \infty$, what do you think y approaches?
5. Euler's method: Sec. 1.4 problem 6. Just do the points $x=1.1,1.2$. Don't round.
6. Separable equations: Sec. 2.2 problem 26.
7. Linear equations: Sec. 2.3 problems 16, 20.
8. Exact equations: Sec. 2.4 problem 12.
9. Mixing: Sec. 3.2 problem 2.
10. Mechanics: Sec. 3.4 problem 6. Initially the object is 100 m above the ground. First draw your coordinate axis!

Answers:

1. $16: \frac{d A}{d t}=k A^{2}$.
2. Both are solutions. Just calculate $\frac{d y}{d x}$ and plug into the differential equation.
3. No, yes. Look at $\frac{\partial f}{\partial y}$ at the two points.
4. Suggestion: Look at the isoclines $c=-2,-1,0,1,2$.
5. Approximation from Euler's method: At $x=1.1, y=0.1$; at $x=1.2, y=0.209$.
6. $y=\left(1-\frac{1}{2} \ln (1+x)\right)^{2}$
7. 16: $y=\frac{1}{\left(x^{2}+1\right)^{2}}\left(\frac{x^{5}}{5}+\frac{x^{4}}{2}+x^{2}-x+C\right)$

20: $y=\frac{3}{5} x^{2}-\frac{1}{2} x+\frac{C}{x^{3}}$
8. $e^{x} \sin y-x^{3}+y^{\frac{1}{3}}=C$
9. $x=2.5-2.0 e^{-.12 t} ; \mathrm{t}=\frac{25}{3} \ln 2=5.776$.
10. If x increases as you go up, $v=-4.9+24.9 e^{-2 t}$. If the initial position of the object is $x=0, x=-4.9 t-12.45 e^{-2 t}+12.45$.
Then $x=-100$ when (after simplifying) $22.95=t+2.54 e^{-2 t}$.
Solution according to Maple: $t=22.95$. (Not surprising.)

