MA 242-005 Review Problems for Test 3

S. Schecter

October 27, 2003

1. Rewrite the iterated integral

$$
\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) d y d x
$$

as an iterated integral with the integration in the order $\int_{*}^{*} \int_{*}^{*} f(x, y) d x d y$.
2. Find the volume of the solid bounded by the planes $x=0, y=0$, $z=0$, and $2 x+y+z=2$. You may use either a double integral or a triple integral.
3. Set up (but do not evaluate) the iterated integral in polar coordinates needed to evaluate the double integral of $f(x, y)=6 x^{2} y$ over the region in the upper half plane that is bounded on the outside by the circle $x^{2}+y^{2}=\pi^{2}$ and on the inside by the spiral $r=\theta$.
4. Find the volume of the solid bounded by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$, the plane $z=0$, and the surface $z=x^{2}+y^{2}$. Use either a double integral in polar coordinates or a triple integral in cylindrical coordinates.
5. The region in the $x y$-plane bounded by $y=x^{2}$ and $y=2-x^{2}$ has density $\rho(x, y)=x^{2}$. Find the mass.
6. Evaluate

$$
\iiint_{E} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} d V
$$

where E is the region that is inside the sphere $x^{2}+y^{2}+z^{2}=4$, inside the cone $z=\sqrt{x^{2}+y^{2}}$, and in the half-space $y \geq 0$.

