MA 242-005 Review Problems for Test 3

S. Schecter

October 27, 2003

1. Rewrite the iterated integral

$$\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) \, dy \, dx$$

as an iterated integral with the integration in the order $\int_*^* \int_*^* f(x, y) dx dy$.

- 2. Find the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and 2x + y + z = 2. You may use either a double integral or a triple integral.
- 3. Set up (but do not evaluate) the iterated integral in polar coordinates needed to evaluate the double integral of $f(x, y) = 6x^2y$ over the region in the upper half plane that is bounded on the outside by the circle $x^2 + y^2 = \pi^2$ and on the inside by the spiral $r = \theta$.
- 4. Find the volume of the solid bounded by the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$, the plane z = 0, and the surface $z = x^2 + y^2$. Use either a double integral in polar coordinates or a triple integral in cylindrical coordinates.
- 5. The region in the xy-plane bounded by $y = x^2$ and $y = 2 x^2$ has density $\rho(x, y) = x^2$. Find the mass.
- 6. Evaluate

$$\int \int \int_E \frac{z}{\sqrt{x^2 + y^2 + z^2}} \, dV$$

where E is the region that is inside the sphere $x^2 + y^2 + z^2 = 4$, inside the cone $z = \sqrt{x^2 + y^2}$, and in the half-space $y \ge 0$.