MA 242-010 Test 2

S. Schecter

February 23, 2001

- 1. Consider the space curve $\mathbf{r}(t) = \langle \frac{1}{2}t^2, \sin t, \cos t \rangle$.
 - (a) Find the velocity vector $\mathbf{v}(t)$.
 - (b) Find the speed v(t).
 - (c) Find the acceleration vector $\mathbf{a}(t)$.
 - (d) Find the tangential component of acceleration $a_T(t)$.
 - (e) Find the normal component of acceleration $a_N(t)$.
- 2. Let $f(x, y) = \sqrt{x + y}$.
 - (a) Find and sketch the domain.
 - (b) Sketch the level curves f(x, y) = 1 and f(x, y) = 2. What is their shape?
- 3. Suppose that f(2,3) = 5, $\frac{\partial f}{\partial x}(2,3) = -3$, and $\frac{\partial f}{\partial y}(2,3) = 7$. Use this information to estimate f(1.9, 3.2).
- 4. A conical pile of sand has height h feet and radius r feet. Hence its volume is $V = \frac{1}{3}\pi r^2 h$ cubic feet. More sand is being dumped onto the pile. At a certain instant, the height of the pile is 8 feet, the radius is 6 feet, the height is increasing at $\frac{1}{2}$ foot per minute, and the radius is increasing at 1 foot per minute. Use the Chain Rule for functions of several variables to determine how fast the volume is increasing at that instant.

- 5. Let $f(x, y, z) = x^2 \sin yz$.
 - (a) Find the gradient of f at $(3, 1, \frac{\pi}{6})$.
 - (b) Find an equation for the tangent plane to the surface $x^2 \sin yz = \frac{9}{2}$ at $(3, 1, \frac{\pi}{6})$.
- 6. Find all points (x, y) where the function $f(x, y) = xy x^2y y^2$ has a local minimum, a local maximum, or a saddle point. (Hint: there are two such points.) Use second partial derivatives to decide which is which.