MA 242-010 Test 2

S. Schecter

February 23, 2001

1. Consider the space curve $\mathbf{r}(t)=<\frac{1}{2} t^{2}, \sin t, \cos t>$.
(a) Find the velocity vector $\mathbf{v}(t)$.
(b) Find the speed $v(t)$.
(c) Find the acceleration vector $\mathbf{a}(t)$.
(d) Find the tangential component of acceleration $a_{T}(t)$.
(e) Find the normal component of acceleration $a_{N}(t)$.
2. Let $f(x, y)=\sqrt{x+y}$.
(a) Find and sketch the domain.
(b) Sketch the level curves $f(x, y)=1$ and $f(x, y)=2$. What is their shape?
3. Suppose that $f(2,3)=5, \frac{\partial f}{\partial x}(2,3)=-3$, and $\frac{\partial f}{\partial y}(2,3)=7$. Use this information to estimate $f(1.9,3.2)$.
4. A conical pile of sand has height h feet and radius r feet. Hence its volume is $V=\frac{1}{3} \pi r^{2} h$ cubic feet. More sand is being dumped onto the pile. At a certain instant, the height of the pile is 8 feet, the radius is 6 feet, the height is increasing at $\frac{1}{2}$ foot per minute, and the radius is increasing at 1 foot per minute. Use the Chain Rule for functions of several variables to determine how fast the volume is increasing at that instant.
5. Let $f(x, y, z)=x^{2} \sin y z$.
(a) Find the gradient of f at $\left(3,1, \frac{\pi}{6}\right)$.
(b) Find an equation for the tangent plane to the surface $x^{2} \sin y z=\frac{9}{2}$ at $\left(3,1, \frac{\pi}{6}\right)$.
6. Find all points (x, y) where the function $f(x, y)=x y-x^{2} y-y^{2}$ has a local minimum, a local maximum, or a saddle point. (Hint: there are two such points.) Use second partial derivatives to decide which is which.
