Page and Paur, Topics in Finite Mathematics Section 1.1 Answers

S. Schecter

August 20, 2009
2. $a_{31}=3, b_{23}=4, c_{13}$ does not exist because \mathbf{C} only has 2 columns, $d_{41}=5$.
10. The matrix equation gives rise to the following system of six equations:

$$
\begin{aligned}
3 y & =6, \\
12 & =16+2 x, \\
0 & =4 u+4, \\
6 z & =4 z+6, \\
3 x & =-6, \\
6 & =8-2 u .
\end{aligned}
$$

The first four are easily solved to yield $y=2, x=-2, u=-1, z=3$. The fifth yields $x=-2$, which is consistent with what we have found so far. However, the sixth yields $u=1$, which is not consistent with what we have found so far. Thus there is no consistent way to assign values to x, y, z, and u.
12. (a)

$$
\mathbf{A}=\left(\begin{array}{lllll}
2 & 3 & 4 & 3 & 2 \\
1 & 2 & 3 & 3 & 1 \\
0 & 2 & 2 & 2 & 1
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{lllll}
1 & 2 & 3 & 3 & 1 \\
1 & 1 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

(b)

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{lllll}
3 & 5 & 7 & 6 & 3 \\
2 & 3 & 5 & 5 & 2 \\
1 & 3 & 3 & 3 & 1
\end{array}\right)
$$

(c) The sum of the two given matrices is the total matrix of unsold suits. It is

$$
\mathbf{C}=\left(\begin{array}{lllll}
1 & 1 & 4 & 2 & 1 \\
1 & 0 & 1 & 2 & 0 \\
0 & 1 & 2 & 2 & 1
\end{array}\right) .
$$

The matrix of suits that were sold is

$$
(\mathbf{A}+\mathbf{B})-\mathbf{C}=\left(\begin{array}{lllll}
2 & 4 & 3 & 4 & 2 \\
1 & 3 & 4 & 3 & 2 \\
1 & 2 & 1 & 1 & 0
\end{array}\right)
$$

