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Abstract. We identify two new traveling waves of the Holling-Tanner model
with weak diffusion. One connects two constant states; at one of them, the
model is undefined. The other connects a constant state to a periodic wave
train. We exploit the multi-scale structure of the Holling-Tanner model in the
weak diffusion limit. Our analysis uses geometric singular perturbation theory,
compactification and the blow-up method.

1. Introduction. In this paper we continue the study of traveling waves of the
Holling-Tanner prey-predator model with weak diffusion, which was begun in [7].
We identify two types of traveling waves that were not considered in that paper.
One connects two constant states; the novelty is that at one of the constant states,
the origin, the model is undefined. The other connects a constant state to a periodic
wave train.

1.1. The model. The diffusive Holling-Tanner prey-predator model is the reaction
diffusion system

ut = Duuxx + u(1− u)− uv

u+ α
,

vt = Dvvxx + δv

(
1− βv

u

)
, (1.1)

In these equations, t > 0 is the time variable; x ∈ R is the spatial variable; Du,
Dv, α, δ and β are positive parameters. The quantity u(x, t) is related to the
prey population, and v(x, t) is related to the predator population. Since physically
meaningful solutions have u and v nonnegative, but the system (1.1) is undefined
for u = 0, we consider (1.1) on the region u > 0, v ≥ 0.
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The spatially homogeneous system

ut = u(1− u)− uv

u+ α
,

vt = δv

(
1− βv

u

)
(1.2)

associated with (1.1) is the Holling-Tanner model [8, 15, 16, 22, 17, 19]. In this
model a predator captures prey at the rate u

u+α , so there is a maximum rate which
has been normalized to 1. The predator carrying capacity of the environment is u

β ,
i.e., it is proportional to the prey population u.

The bifurcation diagram of the ODE (1.2) has been elucidated in a series of
papers [6, 9, 10, 11, 20]. We shall recall some of this work in the course of the paper
(Proposition 2.2 and Sec. 3.1). Turing bifurcations of the PDE (1.1) are studied
in [14]. Existence of traveling front solutions that connect constant states of the
PDE (1.1) has been established in [1, 2, 7], and existence of a family of wave train
solutions was established in [7]. The importance of wave train solutions in ecological
models is emphasized in [21].

1.2. Equilibria. Spatially homogeneous equilibria of the system (1.1) correspond
to equilibria of (1.2). The system (1.2) has the three equilibria (1, 0), (u+, v+),
(u−, v−), where

u± =
β(1− α)− 1±

√
(β(1− α)− 1)2 + 4αβ2

2β and v± = 1
β
u±. (1.3)

Since u+ and v+ are positive, but u− and v− are negative, we shall consider the
equilibrium (u+, v+) but ignore (u−, v−). We let A = (u+, v+) and B = (1, 0).

The equilibrium A is the rightmost intersection of the parabola v = (1−u)(u+α)
and the line v = (1/β)u. The parabola opens downward and has vertex V =
((1− α)/2, (1 + α)2/4).

We define two regions of αβ-parameter space,

R1 = {(α, β) : 0 < α < 1 and β >
2(1− α)
(α+ 1)2 } ∪ {(α, β) : α ≥ 1 and β > 0},

and
R2 = {(α, β) : 0 < α < 1 and 0 < β <

2(1− α)
(α+ 1)2 }.

In R1, A lies to the right of V . In R2, V is in the first quadrant, and A lies to the
left of V .

The second equation of (1.2) is not defined at u = 0; however, if we multiply
the system (1.2) by u, another equilibrium appears, at O = (0, 0). Although the
systems (1.1) and (1.2) are undefined at O, this point is nevertheless of interest,
since it represents the state at which both populations are zero.

1.3. Traveling waves. To find traveling waves with velocity c, we rewrite the
system (1.1) in a frame that is moving with velocity c, i.e., we make the change of
variables ζ = x− ct. In addition we introduce the ratio µ = Dv/Du. We obtain

ut = Duuζζ + cuζ + u(1− u)− uv

u+ α
,

vt = µDuvζζ + cvζ + δv

(
1− βv

u

)
. (1.4)
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Traveling waves of (1.1) with velocity c correspond to stationary solutions of (1.4).
We consider only traveling waves with nonzero velocity.

It turns out that traveling waves exist for any c 6= 0. It is therefore convenient
to introduce the scaling z = ζ/c, so (1.4) becomes

ut = Du

c2 uzz + uz + u(1− u)− uv

u+ α
,

vt = Du

c2 µ vzz + vz + δv

(
1− βv

u

)
. (1.5)

Finally we set ε = Du/c
2 to obtain

ut = εuzz + uz + u(1− u)− uv

u+ α
,

vt = εµ vzz + vz + δv

(
1− βv

u

)
. (1.6)

A stationary solution of (1.6) corresponds, for a given Du > 0 and c 6= 0 with
ε = Du/c

2, to a stationary solution of (1.4), and hence to a traveling wave of (1.1)
with Dv = µDu and velocity c.

We assume ε � 1, i.e., Du � c2. Thus diffusion is very slow compared to the
speed of the wave.

Stationary solutions of (1.6) correspond to solutions of the traveling wave ODE
system

0 = εuzz + uz + u(1− u)− uv

u+ α
,

0 = εµvzz + vz + δv

(
1− βv

u

)
, (1.7)

1.4. Results. In [7] the following results are shown.

Theorem 1.1. Assume (1) (α, β) is in R1, µ > 0, and δ > 0, or (2) (α, β) is in
R2, µ > 0, and δ > 1 − α. Then for sufficiently small ε > 0, there is a positive
solution (u(z), v(z)) of (1.7) that satisfies the boundary conditions

lim
z→−∞

(u(z), v(z)) = A, (1.8)

lim
z→+∞

(u(z), v(z)) = B, (1.9)

The solution is unique up to a shift in z.

The solution of Theorem 1.1 corresponds to a traveling front of (1.1) that con-
nects the equilibria A and B. The state A, in which predator and prey coexist,
gradually expands in space to replace the state B, in which only the prey is present.

Theorem 1.2. Assume (α, β) is in R2, µ > 0, and δ > 0 is sufficiently small.
Then for sufficiently small ε > 0, there is a positive periodic solution (u(z), v(z)) of
(1.7).

The periodic solution of Theorem 1.2 corresponds to a wave train of (1.1).
In this paper we shall prove the following results, which extend the above theo-

rems.
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Theorem 1.3. Assume (α, β) is in R1 or R2, µ > 0, and δ > 1. Then for suffi-
ciently small ε > 0, there is a 2-parameter family of positive solutions (u(z), v(z))
of (1.7), defined for all z, that satisfy the boundary conditions

lim
z→−∞

(u(z), v(z)) = A, (1.10)

lim
z→+∞

(u(z), v(z)) = O, (1.11)

One of the parameters in Theorem 1.3 of course represents shifts in the traveling
waves. We specify that the solutions are defined for all z since a priori solutions
that approach O, where the system is undefined, could do so in finite time.

The solutions of Theorem 1.3 correspond to traveling fronts of (1.1) that connect
the equilibrium A to the point O. The state A, in which predator and prey coexist,
gradually expands in space to replace the state O, in which both predator and prey
are absent.

Theorem 1.4. Assume (α, β) is in R2, δ > 0, and there exists a hyperbolic positive
closed orbit of the spatially homogeneous system (1.2). Let µ > 0. Then for suffi-
ciently small ε > 0, there is a positive solution (u(z), v(z)) of (1.7) that connects a
periodic solution at z = −∞ to the constant state B at z =∞.

Positive closed orbits of (1.2) must surround A. By [7], such orbits exist at least
for small δ, and cannot exist for δ > 1 − α. We discuss the interval of existence
further in Sec 3.

The solutions of Theorem 1.4 correspond to traveling waves of (1.1) that connect
a wave train to the point B. The wave train, in which predator and prey populations
oscillate, gradually expands in space to replace the state B, in which only the prey
is present.

The remainder of the paper is devoted to the proofs of Theorems 1.3 and 1.4.
We shall always assume that the parameters α, β, µ and δ are positive, and shall
indicate where further assumptions on (α, β) and δ are required. The paper ends
with a brief discussion of other traveling waves in the model and another approach.

2. First-order system, rescaling, blow-up, and proof of Theorem 1.3.

2.1. First-order system. We set

(u, u1, v, v1) = (u, du
dz
, v,

du

dz
)

and rewrite (1.7) as the first-order system
du

dz
= u1,

ε
du1

dz
= −u1 − u(1− u) + uv

u+ α
,

dv

dz
= v1,

ε
dv1

dz
= − 1

µ
v1 −

δ

µ
v

(
1− βv

u

)
. (2.1)

System (2.1) is known as the slow system in geometric singular perturbation theory.
The corresponding fast system is obtained by setting z = εξ:

du

dξ
= εu1,
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du1

dξ
= −u1 − u(1− u) + uv

u+ α
,

dv

dξ
= εv1,

dv1

dξ
= − 1

µ
v1 −

δ

µ
v

(
1− βv

u

)
. (2.2)

2.2. Blow-up at the origin. We will work with the fast system (2.2). In order to
see solutions of (2.2) near the origin more clearly, we use the blow-up coordinates

u1 = Pu, v = Qu, v1 = Ru (2.3)

in (2.2). Note that this will convert the term v
u in the fourth equation of (2.2) to

Q. In order to have a polynomial system, which will be convenient in Sec. 3, we
multiply the resulting vector field by u + α. Equivalently, we make the change of
independent variable

η =
∫ ξ

0

1
u(s) + α

ds,

which makes sense as long as u(s) > −α. We obtain
du

dη
= εPu(u+ α),

dP

dη
= −εP 2(u+ α)− P (u+ α) + u2 + (Q+ α− 1)u− α,

dQ

dη
= ε(R− PQ)(u+ α),

dR

dη
= − 1

µ
(u+ α)(εµPR− βδQ2 + δQ+R). (2.4)

We remark that closed orbits of (2.2) with u > 0 correspond to closed orbits of
(2.4) with u > 0. Setting ε = 0 in (2.4), we obtain

du

dη
= 0,

dP

dη
= −P (u+ α) + u2 + (Q+ α− 1)u− α,

dQ

dη
= 0,

dR

dη
= 1

µ
(u+ α)(βδQ2 − δQ−R). (2.5)

In u ≥ 0 the set of equilibria of (2.5) is the two-dimensional manifold

W0 =
{

(u, P,Q,R) : P = Qu+ αu+ u2 − α− u
u+ α

, R = βδQ2 − δQ, u ≥ 0
}
,

(2.6)
the critical manifold of (2.4) in u ≥ 0. Linearizing (2.5) about each point ofW0, we
find two zero eigenvalues and two negative eigenvalues −(u + α) and −(u + α)/µ,
so W0 is normally hyperbolic and attracting for the system (2.5).

Let M0 ⊂ W0 be a compact two-dimensional manifold with boundary. By
Fenichel’s First Theorem [5], [12, Theorem 1], [13, Theorem 3.1.4], M0 perturbs,
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for small ε > 0, to a manifold with boundary
Mε =M0 + O(ε)

that is locally invariant under (2.4), normally hyperbolic, and attracting. We can
use u and Q as coordinates on M0. In terms of these coordinates, we choose M0
so that it includes a set of the form 0 ≤ u ≤ ω, 0 ≤ Q ≤ ω with ω large.

The slow system corresponding to (2.4) is obtained by setting w = εη:
du

dw
= u(u+ α)P,

ε
dP

dw
= −εP 2(u+ α)− P (u+ α) + u2 + (Q+ α− 1)u− α,

dQ

dw
= (R− PQ)(u+ α),

ε
dR

dw
= − 1

µ
(u+ α)(εµPR− βδQ2 + δQ+R). (2.7)

The reduced slow system on M0 is obtained by substituting the equations for P
and R in (2.6) into (2.7) and setting ε = 0:

du

dw
= u(u2 + (Q+ α− 1)u− α),

dQ

dw
= Q

(
(βδQ− δ)(u+ α)− (u2 + (Q+ α− 1)u− α)

)
. (2.8)

In the definition of M0, the number ω is chosen large enough so that M0 contains
all the orbits of (2.8) that are used in the remainder of the proof.

The slow system on Mε is a perturbation of (2.8):
du

dw
= u((u2 + (Q+ α− 1)u− α) + O(ε)),

dQ

dw
= Q

(
(βδQ− δ)(u+ α)− (u2 + (Q+ α− 1)u− α)

)
+ O(ε). (2.9)

2.3. The reduced slow system (2.8) onM0. For the reduced slow system (2.8),
both axes are invariant. There are four equilibria in u ≥ 0: K = (0, 0), L = (0, δ−1

βδ ),
B̃ = (1, 0), and Ã = (u+, Q+), with

u+ = 1
2β

(
(1− α)β − 1 +

√
((1− α)β − 1)2 + 4αβ2

)
,

Q+ = 1
β
.

The points B̃ and Ã correspond to B and A, defined earlier, in uv-coordinates. The
line u = 0 in uQ-space, including the points K and L, corresponds to the origin O
in uv-coordinates.

For the system (2.8):
(i) The equilibrium K has the eigenvalues −α and −α(δ − 1). It is therefore a

hyperbolic saddle for δ < 1 and a hyperbolic attractor for δ > 1.
(ii) The equilibrium L has a positive (resp. negative) B-coordinate for δ > 1

(resp. for δ < 1). It has the eigenvalues −α and α(δ − 1). It is therefore a
hyperbolic saddle for δ > 1 (resp. a hyperbolic attractor for δ < 1).

(iii) The equilibrium B̃ has the eigenvalues 1 + α and −δ(1 + α). It is therefore a
hyperbolic saddle .
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The nature of the equilibrium Ã is less evident. However, a calculation shows:

Proposition 2.1. If we make the change of variables v = Qu in the spatially
homogeneous system (1.2), then multiply the resulting system by −(u+α), we obtain
the reduced slow system (2.8). The system (1.2) in the region u > 0, v ≥ 0, with
time reversed, is therefore smoothly equivalent to the system (2.8) in the region
u > 0, Q ≥ 0.

Therefore the nature of the equilibrium Ã in (2.8) follows from the nature of the
corresponding equilibrium A in (1.2).

More generally, using Proposition 2.1, known facts about the spatially homoge-
neous system (1.2) translate immediately into facts about the reduced slow system
(2.8). The following Proposition gathers some facts about (2.8) that are derived
this way.

Proposition 2.2. For the reduced slow system (2.8):
(i) If (α, β) is in R1 and δ > 0, the equilibrium Ã is a hyperbolic repeller.

(ii) If (α, β) is in R2 there exists δh with 0 < δh < 1−α such that the equilibrium
Ã is a hyperbolic attractor for 0 < δ < δh, and a hyperbolic repeller for
δh < δ <∞. A Hopf bifurcation occurs at δ = δh.

(iii) If (α, β) is in R2, a family of large closed orbits of relaxation type appears
for small δ > 0 in a global bifurcation. These closed orbits are repelling and
surround the attracting equilibrium at Ã.

(iv) For (α, β) in R1 with δ > 0, and for (α, β) in R2 with δ > 1−α, Ã is a global
repeller in the region u > 0, Q > 0.

Parts (i) and (ii) come from Propositions 4.1 and 5.1 of [7]. Part (iii) is a result
of [7]. Part (iv) is stated in [7]; it is a reformulation of a result in [9].

Figure 2.1 shows equilibria of (2.8).

L

K
B~

A~

u

Q

(a)

L

K
B
~

A~

u

Q

(b)

Figure 2.1. Equilibria of (2.8): (a) 0 < δ < 1. If (α, β) is in R2
and 0 < δ < δh < 1− α, then Ã is an attractor. Otherwise Ã is a
repeller. ( b) δ > 1. Ã is a repeller.

2.4. The slow system (2.9) onMε. Since the equilibria K = (0, 0), L = (0, δ−1
βδ ),

B̃ = (1, 0), and Ã = (u+, B+) of the reduced slow system (2.8) are hyperbolic, the
slow system (2.9) has nearby equilibria Kε, Lε, B̃ε, and Ãε of the same types.
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Proposition 2.3. For any sufficiently small ε > 0, the line u = 0 is invariant
under the slow system (2.9) on Mε, and contains Kε and Lε.

Proof. Invariance follows from the fact that for the full slow system (2.7), the 3-
dimensional space u = 0 is invariant for any ε. Since K and L are hyperbolic within
u = 0 for the reduced slow system (2.8) on M0, it follows that Kε and Lε are
contained in u = 0.

Proposition 2.4. For any sufficiently small ε > 0, Kε and B̃ε are contained in the
line Q = 0. In addition, the portion of the line Q = 0 that lies between Kε and B̃ε
is invariant under the slow system (2.9) on Mε.

Proof. Note that for the full slow system (2.7), the 2-dimensional spaceQ = R = 0 is
invariant for any ε. Within this space, for ε = 0 there is a curve C0 of equilibria given
by P = αu+u2−α−u

u+α (compare (2.6)). C0 is a normally hyperbolic curve of equilibria
within Q = R = 0. It therefore perturbs to a normally hyperbolic invariant curve
Cε within Q = R = 0. Since K and L are hyperbolic equilibria within Cε for the
reduced slow system, it follows that Cε includes Kε and B̃ε.

We cannot immediately conclude that Cε is part of Mε, due to nonuniqueness
of perturbations of the normally hyperbolic invariant manifoldsM0. However,Mε

must include all nearby bounded orbits. Therefore Mε includes Kε, B̃ε, and the
portion of Cε between them, which is a bounded orbit. This implies that under the
slow system (2.9) on Mε, the portion of the line Q = 0 that lies between Kε and
B̃ε is invariant.

Proposition 2.5. Kε = K, Lε = (0, δ−1
βδ +O(ε)), B̃ε = B̃, and Ãε = Ã.

Proof. By the previous propositions, Kε is contained in both u = 0 and Q = 0.
Therefore Kε = K.

Using (2.6), L, B̃, and Ã correspond respectively to the following equilibria of
(2.5):

(0,−1, δ − 1
βδ

,
1− δ
βδ

), (1, 0, 0, 0), (u+, 0, B+, 0).

The last two are equilibria of (2.4) for any ε; therefore B̃ε = B̃ and Ãε = Ã. The
first is not an equilibrium of (2.4) for ε 6= 0. (The problem is the term −εP 2(u+α)
in the second equation.) However, Lε has the given form by Proposition 2.3.

2.5. Proof of Theorem 1.3. For the reduced slow system (2.8) onM0 and δ > 1,
we consider in Figure 2.1 (b) the open one-parameter family F0 of orbits that
approach the attractor K as time increases, bounded on one side by a connection
along the vertical axis from the saddle L to K, and on the other side by a connection
along the horizontal axis from the saddle B̃ to K.

From Proposition 2.2 (iv), the orbits in F , along with the stable manifolds of L
and B̃, approach Ã in backward time.

For small ε > 0, we consider the slow system (2.9) on Mε. The Q-axis, and
the u-axis between K and B̃ε, remain invariant by Propositions 2.3 and 2.4, and
the equilibria perturb as described in Proposition 2.5. There is a connection from
the saddle Lε to the attractor K along the vertical axis, and a connection from the
saddle B̃ to K along the horizontal axis. In addition, the stable manifolds of Lε
and B̃ approach Ã in backward time.
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We consider the open one-parameter family of orbits Fε that approach Kε as
time increases, bounded by the connections from Lε and B̃ to K. It follows from
the previous paragraph that these orbits approach Ã in backward time.

After blow-down from uPQR-coordinates to uu1vv1 coordinates, the family Fε
corresponds to a one-parameter family Gε of orbits of (2.2) that connect (u+, 0, v+, 0)
to (0, 0, 0, 0). The orbits in Gε correspond to the traveling wave solutions of (1.7)
described in the theorem. They are positive (u > 0 and v > 0) since for the orbits
in Fε, u > 0 and Q > 0. They are defined for infinite time, since the orbits in Fε
are defined for infinite time, and the various changes of independent variable do not
affect this property.

3. Poincaré sphere and proof of Theorem 1.4.

3.1. Motivation for Theorem 1.4: known facts about closed orbits of
(2.8). We recall from Proposition 2.1 that the spatially homogeneous system (1.2)
and the reduced slow system (2.8) are equivalent in the open first quadrant after
time reversal. The hypothesis of Theorem 1.4 is stated for closed orbits of (1.2),
but closed orbits of (2.8) are more directly relevant to traveling waves. We will
motivate Theorem 1.4 by discussing closed orbits of (2.8).

Positive closed orbits of (2.8) must surround Ã. From Proposition 2.2 (iv), they
can only exist for (α, β) in R2 and 0 < δ ≤ 1− α.

By Proposition 2.2 (iii), for (α, β) in R2, a family of large closed orbits of relax-
ation type appears for small δ > 0 in a global bifurcation. These closed orbits are
repelling and surround the attracting equilibrium at Ã. Assuming no other closed
orbits are present, a partial phase portrait is shown in Figure 3.1(a).

~
BK

A

u

Q

(a)

~

~
BK

A~

u

Q

(b)

Figure 3.1. Equilibria and positive closed orbits of (2.8) in two
cases. (a) A repelling relaxation oscillation for small δ > 0. (b)
Two closed orbits with δh < δ < δt in the case of a supercritical
Hopf bifurcation.

By Proposition 2.2 (ii), for fixed (α, β) in R2, the equilibrium Ã undergoes a
Hopf bifurcation at some δ = δh with 0 < δh < 1 − α, and becomes repelling for
δ > δh.

According to [20], the Hopf bifurcation may be subcritical, in which case a family
of repelling closed orbits defined near and below δh dies in the Hopf bifurcation.
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Presumably these closed orbits are the continuation of the closed orbits of relaxation
type.

On the other hand, according to [20], the Hopf bifurcation may be supercritical.
In this case a family of attracting closed orbits exists near and above δh, then turns
at some δt with δh < δt ≤ 1−α, becoming a family of repelling closed orbits. Again
the repelling closed orbits are presumably the continuation of the the repelling
closed orbits of relaxation type. Assuming no other closed orbits are present, the
phase portrait in the region δh < δ < δt is shown in Figure 3.1(b).

In both Figure 3.1(a) and Figure 3.1(b), if the stable manifold γ0 of the saddle B̃
stays bounded in backward time, then it must approach the repelling closed orbit in
backward time. Then after perturbation, the stable manifold γε of B̃ must approach
the perturbed repelling closed orbit in backward time. The curve γε corresponds to
the traveling wave whose existence is asserted in Theorem 1.4.

Since the bifurcation diagram of closed orbits is not completely known, as far as
we know, we have used a minimal hypothesis in Theorem 1.4, namely that some
hyperbolic closed orbit exists.

3.2. Sketch of proof of Theorem 1.4. To prove Theorem 1.4, we shall first show
that under the hypotheses of the theorem, for the system (2.8), the stable manifold
of the saddle B̃ approaches the outermost closed orbit in backward time. To do
this we shall regard (2.8) as defined on the entire uQ plane, then compactify the
plane by adding a circle at infinity. In other words, we look at the flow on the
Poincaré sphere. This approach is also used in [20], for the system (1.2) multiplied
by u(u+ α), although details are not given there.

The flow of the extended system on the quadrant Q+ of the Poincaré sphere
that corresponds to the first quadrant of (2.8) is shown in Figure 3.2. Since Q+ is
compact, by the Generalized Poincaré-Bendixson Theorem [18, Sec. 3.7], the stable
manifold γ0 of the saddle B̃ approaches, in backward time, either an equilibrium,
a closed orbit, a separatrix cycle (a closed curve consisting of unstable and stable
manifolds of saddles, or their analogues at degenerate equilibria), or a graphic (a
connected union of separatrix cycles). The flow shown in Figure 3.2 has no sepa-
ratrix cycles. The curve γ0 cannot approach Ã because of the existence of a closed
orbit, and the other equilibria are not approached by any interior orbits in backward
time. We conclude that γ0 approaches a closed orbit, which is necessarily bounded
away from the circle at infinity.

Consider the stable manifold γε of B̃ for the perturbed system (2.9) on the
Poincaré sphere. (For simplicity we will often speak of (2.8) and (2.9) as if they
were defined on the Poincaré sphere.). By Lemma 1.1, proved in Appendix A, there
is a compact neighborhood K of γ0 that is bounded away from the circle of infinity
and that contains γε for ε > 0 sufficiently small.

The compact manifold with boundaryM0 corresponds to a subset of Q+ that is
bounded away from the circle at infinity. M0 can be chosen large enough to contain
K.

The only equilibria in M0 are the hyperbolic equilibria at the origin, Ã, and
B̃. Hence the only equilibria in Mε are the same three. (By Proposition 2.5,
the equilibria are unchanged under perturbation.) In Mε the unstable manifold
of B̃, and the stable and unstable manifolds of the origin, are unchanged after
perturbation. Since M0 contains at least one hyperbolic closed orbit surrounding
Ã, so doesMε. Mε also contains the stable manifold γε of B̃. Again the Generalized
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~

B
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Figure 3.2. The flow in the quadrant X ≥ 0, Y ≥ 0 of the
Poincaré sphere when positive closed orbits are present, in which
case we must have βδ < 2. The flow inside the outermost closed
orbit is not shown since it can vary.

Poincaré-Bendixson Theorem implies that γε approaches a closed orbit in backward
time. This proves Theorem 1.4.

The remainder of this section is devoted to justifying Figure 3.2.

3.3. Poincaré sphere. For the analysis in this section we find it more convenient
and aesthetically pleasing to rewrite (2.8) as

u′ = u3 + (v + α− 1)u2 − αu,
v′ = v

(
(βδv − δ)(u+ α)− (u2 + (v + α− 1)u− α)

)
. (3.1)

The upper hemisphere Z > 0 of the Poincaré sphere X2 + Y 2 + Z2 = 1 can be
mapped onto the uv-plane by the coordinate transformation u = X/Z, v = Y/Z.
Its inverse is

X = u√
1 + u2 + v2

, Y = v√
1 + u2 + v2

, Z = 1√
1 + u2 + v2

. (3.2)

Since the system (3.1) is polynomial in u and v, its pullback to the upper hemisphere
of the Poincaré sphere can be rescaled so that it extends smoothly to the equator
X2 + Y 2 = 1, Z = 0. The equator of the Poincaré sphere correspond to the circle
at infinity of the uv-plane [18, Sec. 3.10].

In computations, typically two sets of affine coordinates are used:

(1) x = 1/u, y = v/u on u 6= 0, and (2) x = u/v, y = 1/v on v 6= 0.

Using the rescaled flow in these coordinates, together with the flow of the original
vector field (3.1), one can reconstruct the flow on the Poincaré sphere [3].

Figure 3.2 shows the flow of the pullback of (3.1) in the quadrant X ≥ 0, Y ≥ 0
of the Poincaré sphere, which we call Q+, after rescaling. This quadrant of the
Poincaré sphere corresponds to the quadrant u ≥ 0, v ≥ 0 for (3.1). The equilibria
on the circle at infinity are labeled E and G. G is a hyperbolic attractor, and E
is a nonhyperbolic equilbrium for which the displayed region in the first quadrant
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is a hyperbolic sector. The remainder of this section is devoted to justifying this
description of the equilibria on the circle at infinity.

3.4. The coordinate system x = 1/u, y = v/u . We make the change of variables
x = 1/u, y = v/u in (3.1), and multiply the resulting vector field by x2. The result
is

x′ = −x− xy + (1− α)x2 + αx3,

y′ = (βδ − 2)y2 − 2y + (2− 2α− δ)xy + αβδxy2 + (2α− δ)x2y. (3.3)

On the line x = 0 (which corresponds to the “line” u = ∞) there are equilibria at
y = 0 and y = 2/(βδ− 2). The eigenvalues of the linearization of (3.3) at (0, 0) are
−1 and −2, In Figure 3.2, (0, 0) corresponds to G.

We assume that (α, β) is in R2 and 0 < δ ≤ 1 − α, since we noted in Sec. 3.1
that these conditions are required for the existence of positive closed orbits of (2.8).
We recall that

R2 = {(α, β) : 0 < α < 1 and 0 < β <
2(1− α)
(α+ 1)2 }.

The boundary curve β = 2(1−α)
(α+1)2 , 0 ≤ α ≤ 1, attains its maximum at α = 0, where

β = 2. Therefore in R2 we have 0 < β < 2. We also note that 0 < δ < 1 − α and
0 < α < 1, so 0 < δ < 1. We conclude that βδ < 2. Therefore the equilibrium at
y = 2/(βδ − 2) has y < 0, so it does not lie in the first quadrant of the Poincaré
sphere. We can ignore it.

For completeness we give the flow on the first quadrant of the Poincaré sphere
for βδ > 2 in Appendix B.

3.5. The coordinate system x = u/v, y = 1/v. We make the change of variables
x = u/v, y = 1/v in (3.1), and multiply the resulting vector field by y2. The result
is

x′ = (2− βδ)x2 + 2x3 + (2α+ δ − 2)x2y − αβδxy + (δ − 2α)xy2,

y′ = (1− βδ)xy + x2y − αβδy2 + (α+ δ − 1)xy2 + α(δ − 1)y3. (3.4)

On the line y = 0 (which corresponds to the “line” v = ∞) there are equilibria at
x = 0 and x = (βδ − 2)/2.

The second of these equilibria does not lie in the first quadrant of the Poincaré
sphere since, as we have seen, βδ < 2. The equilibrium at (0, 0) is degenerate: all
partial derivatives of (3.4) there are 0. It corresponds to E in Figure 3.2.

3.6. Analysis of the degenerate equilibrium. We analyze the degenerate equi-
librium (0, 0) of (3.4) using the polar coordinate map

Φ : S1 × R→ R2, ((x̄, ȳ), r) 7→ (x, y),

where x̄2 + ȳ2 = 1 and
x = rx̄, y = rȳ.

In computations, as in the previous subsections, typically two sets of affine coordi-
nates are used:

(1) x = r, y = ry1 on x 6= 0, and (2) x = rx1, y = r on y 6= 0.

Using the rescaled flow in these coordinates for small r, one can reconstruct the
rescaled flow on S1 × R for small r, and hence the flow of (3.4) near (0, 0) .



MORE TRAVELING WAVES IN HOLLING-TANNER MODEL 13

In the coordinates x = r, y = ry1, the system (3.4) becomes, after division by r:
ṙ = (2− βδ)r + 2r2 + (2α+ δ − 2)r2y1 − αβδry1 + (δ − 2α)r2y2

1 ,

ẏ1 = −y1 − ry1 + ry2
1 + (α− δ + αδ)ry3

1 . (3.5)
On the invariant line r = 0, (3.5) has the unique equilibrium E1 = (0, 0) with
eigenvalues 2− βδ and −1. Since βδ < 2 it is a saddle.

In the coordinates x = rx1, y = r, the system (3.4) becomes, after division by r:
ẋ1 = x2

1 + rx3
1 + (α− 1)rx2

1 + (δ − α− αδ)x1r,

ṙ = (1− βδ)rx1 + r2x2
1 − αβδr + (α+ δ − 1)r2x1 + α(δ − 1)r2. (3.6)

On the invariant line r = 0, (3.6) has the unique equilibrium E2 = (0, 0) with
eigenvalues 0 and −αβδ. A center manifold is the x1-axis, on which the system
reduces to ẋ1 = x2

1.
Combining the results from the two coordinate systems, we obtain Figure 3.3,

which shows the flow near the degenerate equilibrium (0, 0) of (3.4) coordinates.
After blow-down we obtain a hyperbolic sector.

E2:(x,y)=(0,1)

E1:(x,y)=(1,0)

Figure 3.3. The flow near the degenerate equilibrium (0, 0) of
(3.4) in polar coordinates when βδ < 2. So that the reader can more
easily compare this figure with Figure 3.2, the circle r = 0 is shown
upside down, with the point (x̄, ȳ) = (0, 1) at the bottom of the
circle. With some abuse of notation, the equilibria are labeled E1
and E2 to correspond to the equilibria in the two affine coordinate
systems.

4. Discussion. We mention two other types of traveling waves that exist in the
Holling-Tanner model with weak diffusion.

(i) When closed orbits are present in the spatially homogeneous system (1.2),
there is a one-parameter family of orbits of (1.2) that connect the equilibrium
A to the innermost closed orbit. If we assume that (1.2) has at least one
hyperbolic closed orbit, then for small ε > 0 there will be traveling waves that
connect the constant state A to a periodic solution. If A is an attracting (resp.
repelling) equilibrium of (1.2), then A is the state at z = −∞ (resp. z =∞)
of the traveling wave.
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(ii) When two adjacent hyperbolic closed orbits are present in the spatially homo-
geneous system (1.2), there is a one-parameter family of orbits that connect
them. For small ε > 0 there will be a one-parameter family of traveling waves
that connect two periodic solutions.

The existence of these traveling waves is easily proved. For the slow-fast system
(2.2), one constructs the critical manifold and the slow system on the critical man-
ifold, which is just (1.2) with time reversed. It is not necessary to use the blow-up
coordinates (2.3). The perturbed system for ε > 0 will have orbits that correspond
to the traveling waves.

We also mention that the recent paper [4] takes a different approach to the
problem of identifying traveling waves in a predator-prey model with diffusion. The
analysis in this paper is based on global attractor theory.

Appendix A. Perturbed stable manifold of B̃. We saw in Sec. 3.2 that under
the assumption of Theorem 1.4, for the system (2.8) on the Poincaré sphere, the
stable manifold γ0 of B̃ approaches a closed orbit Γ in backward time.

Lemma 1.1. There is a compact neighborhood K of γ0, bounded away from the
circle at infinity, such that for small ε > 0, the stable manifold of B̃ is contained in
K.

Proof. . The proof is based on the proof of the Poincaré-Bendixson Theorem; see
[3, Sec. 1.9]. Let Σ be a compact line segment that is transversal to Γ such that
the vector field for (2.4) is transverse to Σ; see Figure A.1(a). Let p1 be the first
intersection of γ0 with Σ, and let p2 be the second intersection of γ0 with Σ. The
portion of γ0 from p1 to p2, together with the portion of Σ from p2 to p1, forms a
closed curve. This closed curve bounds a closed disk D. D is backward invariant
under the flow of (2.8). Therefore D contains all of γ0 after p1.

p
1p

2

 𝛾

Σ

K

~B

(a)

0

B~

q1
q2

K
 

Σ

(b)

ε
 𝛾

Figure A.1. (a) γ0 and K. The disk D is shaded. (b) γε and K.

Consider the set S consisting of B̃, the portion of γ0 from B̃ to p1, and the disk
D. Let K be a compact neighborhood of S. Then K contains γ0; see Figure A.1(a).

For small ε > 0, the vector field for (2.9) is transverse to Σ, we can define q1 and
q2 to be the first and second intersections of γε with Σ, and the portion of γε from
B̃ to q2 will lie in the interior of K. See Figure A.1(b).
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The portion of γε from q1 to q2, together with the portion of Σ from q2 to q1,
form a closed curve that bounds a closed disk. This disk is contained in K and
is backward invariant under the flow of (2.9). Therefore the entire curve γε is
contained in K.

Appendix B. Poincaré sphere when βδ > 2. In Sec. 3 we described the flow
of (2.8) in the first quadrant of the Poincaré sphere when βδ < 2. For completeness
we shall describe the flow of (2.8) in the first quadrant of the Poincaré sphere when
βδ > 2. In this case there are no closed orbits. It is still true that the equilibria on
the circle at infinity do not attract any orbits in the finite plane in backwards time.
The equilibrium Ã is a global repeller. See Figure B.1.

G

E

K

A
~

B
~

F

Figure B.1. The flow in the quadrant X ≥ 0, Y ≥ 0 of the
Poincaré sphere when βδ > 2.

Comparing to Figure 3.2, there is a new equilibrium on the circle at infinity,
labeled F . F is a hyperbolic saddle. In addition, the nonhyperbolic equilbrium E
has changed. It now has an attracting parabolic sector in the first quadrant.

E1:(x,y)=(1,0)

 E2:(x,y)=(0,1)

Figure B.2. The flow near the degenerate equilibrium (0, 0) of
(3.4) in polar coordinates when βδ > 2. Compare Figure 3.3.
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Comparing to Figure 3.2, there is a new equilibrium on the circle at infinity,
labeled F . F is a hyperbolic saddle. In addition, the nonhyperbolic equilbrium E
has changed. It now has an attracting parabolic sector in the first quadrant.

To justify these changes, note that in Sec. 3.4, when βδ > 2, the equilibrium at
y = 2/(βδ − 2) is in the first quadrant. It is the equilibrium labeled F in Figure
B.1. The eigenvalues of the linearization of (3.3) at (0, 2/(βδ − 2)) are βδ/(2− βδ)
and 2, so it is a hyperbolic saddle.

In Sec. 3.5 the equilibrium at x = (βδ− 2)/2 corresponds to F in Figure 3.2 and
has already been analyzed in the other coordinate system.

In the blow-up of the degenerate equilibrium E in Sec. 3.6, the equilibrium E1
has eigenvalues 2 − βδ and −1. Since βδ > 2 it is a hyperbolic attractor. After
blow-down we obtain an attracting parabolic sector. See Figure B.2.
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