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u .
_ model with

ur = DquX + U(]. - U) - v, diffusion
a-+u

Vi = Dyve +0v (1 — Bv) .
u

> u= prey, v= predator.

» Both populations are subject to overcrowding.

» Predator carrying capacity is proportional to prey
population.

» For fixed predator population, prey is consumed at a
rate that stabilizes as its population increases.




Entry-exit function

Tra Vel I n g Wa VeS and geometric

singular
i perturbation
Ghazaryan, Manukian, S., Proc. Roy. Soc. London Ser. A theory
471 (2015) Steve Schecter
Holling-Tanner
1 | H model with
» Look for traveling waves with velocity ¢ > 0, set B

zZ = X — Ct.
> Rescale space soc=1.

> Sete= 2 = D— (Small € > 0 means small
diffusion. )

Traveling waves (u, v)(z) satisfy:

0 = euzp+u,+u(l—u)— “ ,
o+ u
_ B
0 = €uvyp+v4+0v|(l—=v].
u

Rewrite as a first-order system.




A slow-fast system in slow form

u; = U,
eU, = —U—-u(l—u)+ = v,
a—+u
v, = V,
euV, = -V —dv <1—§v).

Normally attracting critical manifold (set ¢ = 0):

U=—-u(l—u)+ = v, Vz—év(l—fv).

o+ u

Slow system:

v—u(l—u), vZ:6v<§v—1>.

u
a—+u

u, =

Undefined for u = 0. Multiply by (o + v)u:
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Another slow-fast system, in fast form and geomerc
ity
theory
L‘I = U2(V — (1 - U)(Oé + U)), Steve Schecter
V — 5V(a + U) (,BV - U) . Holling-Tanner

model with
diffusion

Small § > 0 means slowly changing predator population.

u = 0 is now invariant. Note the factor v2.

7

1

Q

u

6=0 >0

For small 4 > 0, numerical simulation shows a closed
orbit near a “singular orbit” with a certain value of vj.
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Z. = g(X7 2)27 Holling-Tanner

model with
diffusion

with x € R, z € R,
f(x,0) >0, g(x,0) has the sign of x.

Note the factor z.

For e = 0, the x-axis consists of equilibria.

Normally attracting for x < 0, normally repelling for
x > 0. Loss of normal hyperbolicity at z = 0.

v

v

v

ulyur
Y

For € > 0, x-axis remains invariant, flow is to the right.

v




. . . - Entry-exit function
Entry-exit function: attraction and repulsion e
singular
ba | a n Ce per:;fl;fytion
Z Steve Schecter
¢ ¢ ZOJ Holling-Tanner
> > X model with
%o pg(-xo) diffusion
t1 Vi

For small € > 0, a solution that starts at (xp, zp), with xp
negative and zp > 0 small, reintersects the line z = z, at

(Pe(x0), 20)-

Theorem
As e — 0, p(x0) — po(xo0) given implicitly by

po(xo)
g(x,0)
dx = 0.
/XO f(x,0)

The solution leaves the x-axis when repulsion has built
up to balance the attraction that occurred before x = 0.




If the theorem holds when z is replaced by z2,
how to prove existence of the closed orbit
Vv

|21
Vi

—

Define vg by [ Y= dv = 0.

vy afv?
Follow the flow backwards for small 6 > 0.

v

ps 1 X1 — X (entry-exit function) would be smooth.
gs : o — X1 is an exponential contraction.
gs o ps : X1 — X1 has a fixed point.

vV vV.v Y
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- Entry-exit function
Reform u |at|0n and geometric
singular
perturbation
theory

)‘( — Ef(X, Z), Steve Schecter
z=g(x,2)z.

f(x,0) >0, g(x,0) has the sign of x. e '
assical entry-exit
function

Divide by f(x,z) > 0, let h = g/f:
X =€,
z = h(x,z)z.

h(x,0) has the sign of x.

Theorem
As e — 0, p(x0) = po(xo0) given implicitly by

po(xo0)
/ h(x,0) dx = 0.

X0




“Standard” proofs that p.(xp) — po(x0)

» Asymptotic expansions: Haberman, SIAM J. Appl.
Math. 37 (1979), 69-106; Mishchenko, Kolesov,
Kolesov, and Rozov, Asymptotic methods in singularly
perturbed systems, 1994.

» Comparison to solutions constructed by separation of
variables: S., J. Diff. Eq. 60 (1985), 131-141.

» Direct estimation of the solution and its derivatives
using the variational equation: De Maesschalck, J. Diff.
Eq. 244 (2008), 1448-1466.

De Maesschalck: Let p(xp,€) = pe(x0), € > 0. If f and g are
C',r>1,thenpis C".
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How to prove p.(xg) — po(xo) in the C° sense

X =€,
z = h(x,z)z.
h(x,0) has the sign of x.
Replace by

dz  (h(x,0) £ a)z
dx ¢
If a solution that starts on the line z = zp at x = xg
reintersects it when x = xq, then

0= /Xl(h(x,O) L a)dx =0,

0

= Sdz= (h(x,0) £+ a)dx.
z
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» De Maesschalck’s proof doesn't seem to work for z
replaced by z2.

» Proofs don't use the blow-up method of Geometric
Singular Perturbation Theory, today the usual approach
to loss of normal hyperbolicity in slow-fast systems.
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De Maesschalck and S., J. Diff. Eq. 260 (2016), [hesiy

singular
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X =€,

7 = h(x, z)z°.

Blow-up and the

h(X7 O) has the Slgn Of X. entry-exit function

Using blow-up, we prove:

Theorem
If h is C*°, then:

1. There is a C* function p of three variables such that
P(xo, €) = B(xo, €, €loge).

2. If h(x,z) — h(x,0) is C* flat in z, then p is a C*
function of (xo, €).




A change of variables and the classical situation

1
“woif 0
Z:H(W):{e ImTw > U,

0 if w=0.
X = €,
w = h(x, s(w))w?,
because
. , . 11
= = w— =

z=r(w)w=e AW

W = ewzw?® = ewh(x, k(w))e ww?.

Notice h(x, k(w)) — h(x,0) is C* flat in w.
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Classical result recovered

X =€,
z = h(x,z)z.

h(x,0) has the sign of x.

Theorem
If h is C*, then p(xp,€) is C.

This result is not new, but it follows from part 2 of the Main
Theorem.

Thus a linear result is a consequence of a quadratic
result.
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Proof of Main Theorem: Extension of the system [l

singular

perturbation
theory
)‘( — 67 Steve Schecter
: 2
z = h(x,z)z",

€=0.
h(x,0) has the sign of x.

Blow-up and the

€ entry-exit function
” "7 X
(X0,€) (Pe(x0)-€)
R, R,

Define P : Ry — R3 by P(xo,€) = (pc(X0), €), with pg
defined implicitly by [ h(x,0) dx = 0. Study P.
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7 = h(x,2)2%
€=0.

Blow-up and the
entry-exit function

Let (x,(Z,€),r) be a point of R x St x Ry; 22 +& = 1.
Blow-up transformation:

Our system pulls back to one on R x S* x R,

Division by r desingularizes the new system on the
cylinder r = 0 but leaves it invariant.




Cylindrical coordinates

The blow-up can be visualized most completely in
cylindrical coordinates.

For (x,(2,€),r) € R x S x Ry, let Z = cosf and € = sinf.
x=x, z=rcosf, e=rsinf.

After making the coordinate change and dividing by r, the
system becomes

X =sinf,
F = rcos® 6 h(x, rcosf),

0 = — cos? 0sin 0 h(x, r cos ).
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Flow in cylindrical coordinates

x =sinb,

F = rcos® 6 h(x, rcosf),

= — cos?@sin @ h(x, r cos ).
5

6=61
; 6=0

<o

/3

0=mn/2
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Affine coordinates

X =€,
7 = h(x, z)2°,
€=0.

New coordinates that blow up the x-axis to a plane:

The plane z = 0 in xzE-space corresponds to the line
z =€ =0 in xze-space

Change variables, divide by z (otherwise the plane z =0 is
all equilibria):

x =E,

z = h(x,z)z,
E = —h(x,z)E
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- - - Entry-exit function
Flow in affine coordinates e
singular
pertu%bation
theory
)'< — E7 Steve Schecter
z = h(x,z)z,
E= —h(x,z)E
Notice € = zE is a first integral. Blow-up and the

entry-exit function

20

s dE 3
0= / —dx = / —h(x,0) dx = x3 = po(xo).

0 dx 0




Return map as a composition

E

P=P30PyoP;.
P> is clearly C*°.

It remains to study the smoothness of P; and Ps.
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Simplification

x=E,
z = h(x,z)z,
E = —h(x,z)E

At the left, divide by —h(x,z) >0, let k =

x = k(x,z)E,
z=—z,
E=E.

Note that zE = € is constant on solutions.
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x = k(x,z)E,
z=—2z,
E=E.

Blow-up and the
entry-exit function

Straighten flow on z = 0:

E E

pr s ]
/7 /7

< Z

Then X = k(X, z, E)zE = ek(X, z, E).




Normal form step 2

Proposition
Let N > 1. Then after a C* coordinate change

x=n(x,z,E),

ca(%,€) + €V b(x, z, E),

-z,

X

z
E=E,

with a and b of class C*°.

Proof: The case N =1 was step 1 (with a = 0). If the
proposition is true for some N, let

R = )_<+€N(,3()_<,Z) + (%, E)),

and choose /3 and ~ to eliminate terms of order eV .
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Integration change of variables

= ea(X,€) + €V2b(x, z, E),
= —Z’

= E,

m- N X

Integrate from (%o, 1,€) to (X1, £, E1). Change of variables:

t
z=zElogz=-¢clogz, E=zElogE =¢logE, T=-.
€

Use z = gz = —¢, etc.:
X' = a(x,€) + eV Tlb(x, &7/, F/€),
z' = -1,

E' =1.

Integrate from (%o, 0, eloge) to (1, €log £, €log E1).
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Region of integration

x = a(Xx,
7 =1,
E'=1.

Regard € as a parameter. Integrate from (%o, 0, eloge) to

(X1, €log £, €log Ey).

B FE=¢ log E1
z=¢ log (¢/E)) ¢ E=¢log ¢ \ €

Within the region of integration D, the system is C".
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Smooth ness Entry-exit func.tion
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singular
perturbation
= C heor;
=/ _ (= N+1lpr- . Z/e E/e theory
X = a(X7 6) + € b(X, € € ) Steve Schecter
_ E=¢ log Ei
Z=e log (¢/E)) ¢ E=eloge \ e

Blow-up and the
entry-exit function

-— —
-— —
-— —
‘ z E

8N B _
6N+1b()_<, ez/e’ eE/E)

OeN
oz E\V
= NHDyb(x, e7/€, eF/€) <—2> +...
€

— (e

-Dsb(x, €7/, eE/) +

€

Within D, £5 — 0as (2, E,¢) — (0,0,0).




Output depends on (X, €, € log €)

3 E=¢ log Ey
z=¢ log (¢/E)) ¢ E=¢loge \ €
L _E

The solution with initial condition (x,Z, E) = (Xo,0, Eo) at
7 = 0 has X-coordinate X = ¢(Xo, Eo, €,7), where ¢ is CN as
long as the solution remains in D. Thus

x1 = ¢(Xo, Eo,e,T) = ¢(Xo, €loge, €, elog Ex — eloge).

More compactly, %, is a CN function of (X, €, € log €).
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z=g(x,z€)z,
(x,z) e R" xR, f(x,0,0)#0, g(x,0,0)<0.

Exchange Lemma

and the entry-exit
function

Theorem

If No and the N, (e > 0) fit together to form a smooth

manifold of xze-space, then, away from Py, Py and the N}
(e > 0) do too.




Ting-Hao Hsu, preprint, 2016
Slow-fast system #1

X =€,

h(x,z)z,

h(x,0) has the sign of x.

Dot indicates derivative with respect to fast time t.

Introduce the slow time 7 = et as a new dependent variable.

Slow-fast system #2
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X = 6, Steve Schecter

z = h(x,z)z,

T =¢€
For xg < 0:

» Define x; by f;;l h(x,0) dx = 0.

. Exchange Lemma
» Define T1 — X1 — X0- and the entry-exit

function
Z Z
b aw ot
X > > X

P - I
e=0

= e>0




Slow-fast system #2
X =€,
z = h(x,z)z,
T = €.
Start and end 1-dimensional manifolds:
» Define Ne: (x,z,7) = (x0,20,0) : |o] <.
» Define Qc: (x,2,7) = (x1 + 0,20, 71) : |o] <.
Idea: For € > 0, start at (x,z) = (xo, 20), return to z = zp:
will have x ~ x; and A7 ~ 71.

Z

2o
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» Project Ny and @ along the fast flow to z = 0. Get Py
and Ro.

> Follow Py and Ry using the slow system on z = 0:.

» Obtain P and Rj, both open subsets of x7-space.

This does not help us study the intersection of N and
Q?, which are near P} and Rj.




[y - ” - —Q . .
Introduce an “extra variable” using z =¢e¢" < or: Entry-exit function

and geometric
singular

z' perturbation
theory

(=—€lnz, so (=—e==—eh(x,z2).

4 Steve Schecter

Slow-fast system #3 (equivalent to original system on

the invariant manifold ( = —¢lInz)
X =€,
z = h(X, Z)Z7 Exchange Lemma
and the entry-exit
. functi
C — _Gh(X, 2)7 unction
T =€

New start and end 1-dimensional manifolds:
» Ne: (x,2,7) = (x0,20,0) : |o| <0 —>
N.: (x,2,¢(,7) = (x0,20, —€Inzg,0) : |o| <§
» Qe (x,2,7)=(xa+0,20,71): |0 <F —>
Qe: (x,2,(,7) = (x1 + 0,20, —€lnzg,11) : |o] <O




Project Ny and @ along the fast flow to z =0, i.e., to Entry-exit function
and geometric
XCT—Space: singular
perturbation
theory

(X7C77_) - (X07O7J) : ‘O—‘ < 4.
(x,¢,7)=(x1+0,0,11) : o] <.

teve Schecter

> :502
> /%0:

= X
Xy
Exchange Lemma
and the entry-exit
function
R,

Follow using the slow system on z = 0:
x =1,
C/ = _h(Xa 0)7
=1
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, X
‘xl
R,
Exchange Lemma
. . 5 5 d th -exi
We easily obtain: P§ and R§ meet transversally at g b

0
(x.C.7) = (0, / ~h(€,0) dE, —x)

0

0
- (0. / ~h(€,0) dE, ).

1

Equality follows from fx);l h(&,0) d¢ = 0.




Summary for Slow-Fast System #3 in xz({7-space Entry-exit function
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; X
~/ %o 3 X
P ‘ .
0
-X,
=K, R

» Start and end 1-dimensional manifolds N, and Q..

Exchange Lemma

> Project No and @ along the fast flow to Py and Ry in e T ——

function

z =0, i.e, in x(T-space.

> 156‘ and f?é‘ meet transversally (2-dimensional manifolds
in R3).

> By the Exchange Lemma, away from Py and Ry, N*
and Q* are close to P0 and Ro respectlvely

» But we cannot conclude that N* and Q* meet
transversally.
1. Two-dimensional manifolds in R*.
2. Exchange Lemma can'’t follow N* and Q* to x = 0.




Objection 1: N* and Q* are 2-dimensional manifolds in R*.

C

X

» N7 and Q; are close to Py and R, which meet
transversally in x(7-space.

» Project IVE* and Q;k to x(7-space (ignore small

z-coordinate). The projections meet transversally there.

» But then N* and Q intersect, because on these
manifolds, ( = —eln z.

Entry-exit function
and geometric
singular
perturbation
theory

teve Schecter

Exchange Lemma
and the entry-exit
function




Objection 2: Exchange Lemma can't follow N* and Q7 to
x =0.
Slow-fast system #3

= 67
= h(x, z)z,
= —eh(x, z),

— €.

- . N-X-
|

Within the manifold ¢ = —elnz, in which both N* and Q*
lie,

In the slow time 7 = et:
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Within the manifold ( = —elnz, in which both I\NIE* and C}:‘
lie,

Use this to follow N* and Q* to x = 0.
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Recent work that uses an “extra variable” to S
. L. B singulall'
study exponential loss of normal hyperbolicity in S

geometric singular perturbation problems Steve Schecter

K. U. Kristiansen, "Blowup for flat slow manifolds with
applications to regularization of piecewise smooth systems
using tanh and a model of aircraft ground dynamics,”
preprint, 2016.
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