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Combustion Fronts in a Porous Medium
with Two Layers
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We study a model for the lateral propagation of a combustion front through a
porous medium with two parallel layers having different properties. The reaction
involves oxygen and a solid fuel. In each layer, the model consists of a nonlin-
ear reaction–diffusion–convection system, derived from balance equations and
Darcy’s law. Under an incompressibility assumption, we obtain a simple model
whose variables are temperature and unburned fuel concentration in each layer.
The model includes heat transfer between the layers. We find a family of trav-
eling wave solutions, depending on the heat transfer coefficient and other sys-
tem parameters, that connect a burned state behind the combustion front to an
unburned state ahead of it. These traveling waves are strong: they correspond to
connecting orbits of a system of five ordinary differential equations that lie in
the unstable manifold of a hyperbolic saddle and the stable manifold of a non-
hyperbolic equilibrium. We argue that for physically relevant initial conditions,
traveling waves that correspond to connecting orbits that approach the nonhyper-
bolic equilibrium along its center direction do not occur. When the heat transfer
coefficient is small, we prove that strong traveling waves exist for a small range
of system parameters, near parameter values where the two layers individually
admit strong traveling waves with the same speed. When the heat transfer coeffi-
cient is large, we prove that strong traveling waves exist for a very large range of
parameters. For small heat transfer, combustion typically does not occur simulta-
neously in the two layers; for large heat transfer, it does. The proofs use geometric
singular perturbation theory. We give a numerical method to solve the nonlinear
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problem, and we present numerical simulations that indicate that the traveling
waves we have found are in fact the dominant feature of solutions.

KEY WORDS: reaction–diffusion–convection system; traveling wave; non-
hyperbolic equilibrium; geometric singular perturbation theory; Melnikov
integral.
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1. INTRODUCTION

Combustion fronts in porous media have been studied by many
authors during the last few decades. In particular, for combustion pro-
cesses in oil recovery, models and results of numerical simulations have
been presented. One of the first models of combustion in a petroleum res-
ervoir was formulated by Gottfried [12]. The model consists of a system of
six partial differential equations describing the flow of oil, water, and gas
through the porous medium, together with a chemical reaction between
oxygen and oil. Numerical simulations exhibit all of the main thermal and
hydrodynamic features of in situ combustion known from the laboratory,
including propagation of the combustion zone, formation of a steam pla-
teau, and formation of water and oil banks. Crookston and Culham [5]
presented a general model for thermal recovery processes, as well as asso-
ciated numerical procedures. In addition to the aspects of combustion pro-
cesses modeled by Gottfried, they included such aspects as coke formation
and oxidation.

These models are nonlinear reaction–diffusion–convection systems
derived from the principle of conservation. In vector form in one space
dimension, they have the form

H(U)t +F(U)x = (B(U)Ux)x +G(U), 0<x<l, t >0, (1.1)

where l is the length of the porous medium and U is the vector of
unknown quantities, such as temperature and densities. The first and sec-
ond terms in (1.1) represent, respectively, accumulation and transport by
convection of these quantities; the function G represents source terms due
to chemical reactions and heat loss; and the term (B(U)Ux)x represents
diffusion of heat, mass, etc.

The combustion process is described by the solution of the system
(1.1), with suitable initial and boundary conditions. A rigorous analysis of
this solution is difficult, because the functions H , F , and G are in gen-
eral nonlinear, and the number of equations and parameters in a complete
model is large.



Porous Medium with Two Layers

In the more recent engineering literature, several authors have given
detailed analyses of aspects of combustion in porous media. In this lit-
erature, combustion fronts are assumed to exist, and jump conditions
across them are derived by integration. For example, Schult et al. [20]
investigated smolder combustion when gas is forced into pores in a solid
reactant. Using asymptotic methods, they identify two different wave
structures: a reaction-leading wave and a reaction-trailing wave. They
occur when the incoming oxygen concentration is sufficiently high or low,
respectively. Akkutlu and Yortsos [1] used a similar approach to study
in situ combustion for oil recovery. They focus on the effects of heat
loss to the surrounding rock formation. Using a jump condition across
the reaction front, they derived an analytical expression relating injec-
tion velocity and temperature of the combustion front. When the injection
velocity exceeds a threshold value, multiple front temperatures can occur.

Some complementary recent work identifies combustion fronts with
traveling waves, and proves their existence using geometric methods.
Da Mota et al. [6, 7] used this approach to study combustion fronts in
a two-phase (oil and oxygen) model. Combustion fronts were identified
with traveling waves connecting an unburned state ahead of the front to
a burned state behind it. Schecter and Marchesin [18, 19] added heat loss
to the surrounding rock formation to this model. Using geometric singu-
lar perturbation theory, they showed that for small heat loss, the combus-
tion front is the lead part of a traveling pulse, while the trailing part of
the pulse is a slow cooling process.

In all this work the porous medium consists of a single layer. How-
ever, the porous media where crude oil is found contain different layers,
characterized by different porosity, density, thermal conductivity, etc.

In this paper, we study a model for combustion of oxygen and a solid
fuel such as coke in a porous medium with two layers. In each layer, the
model is a simplification of those considered by Gottfried and Crookston.
It includes balance of energy, fuel mass, oxygen mass, and total gas mass,
as well as Darcy’s law, a chemical reaction rate, and heat conduction in the
flow direction. The model also includes heat transfer between the layers.

We consider only the incompressible case, in which the gas density is
taken to be an average value not depending on temperature or pressure. In
this case, the model reduces to a system of four nonlinear partial differen-
tial equations governing temperature and unburned fuel concentration in
each layer.

For this simplified system, we study traveling wave solutions that con-
nect a completely burned state behind the reaction front to an unburned
state ahead of it. The unburned state is assumed to be at the background
temperature of the porous medium, which is taken to be the ignition
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temperature. Such traveling waves correspond to connecting orbits in a
system of five ordinary differential equations (ODEs) that lie in the unsta-
ble manifold of a hyperbolic saddle and the center-stable manifold of a
nonhyperbolic equilibrium. They occur for a range of wave speeds. In
combustion problems, zero eigenvalues commonly occur at equilibria cor-
responding to unburned states because of the form of Arrhenius’s law.

When the connecting orbit lies in the stable manifold of the nonhy-
perbolic equilibrium, it and the corresponding traveling wave are called
strong. In our model, strong traveling waves typically occur only for iso-
lated values of the wave speed. We argue that for physically relevant initial
conditions, only strong traveling waves occur. We prove the existence of a
family of strong traveling waves parameterized by the heat transfer coeffi-
cient and other system parameters.

The proofs use normally hyperbolic invariant manifolds and geomet-
ric singular perturbation theory, which are frequently used in the study
of traveling waves (for background in these areas, see [9, 13], and for an
application to combustion, see [11]). We mention in particular the paper of
Bose [2], which studies a “two-layer” model: nerve-conduction along two
parallel nerve fibers. The issue in [2] is different, however: the two fibers
have exactly the same physical properties, and the question is which trav-
eling waves persist when there is small coupling between them. The pres-
ent two-layer model can perhaps serve as a prototype for other two-layer
traveling-wave problems in which the layers have different properties; the
features we find should occur in other situations.

The importance of the strong combustion waves that we find theoreti-
cally is demonstrated by numerical simulations of the system, in which it is
observed that any injection gas temperature above a threshold value pro-
duces a solution that includes one of these combustion waves. The wave
selected depends only on the heat transfer coefficient and other system
parameters, not the injection temperature.

We now preview the remainder of the paper.
In Section 2, we describe the full model. Under an incompressibility

assumption, we obtain the simplified system that we shall study.
In Section 3, we derive the ODEs that govern traveling waves. We

then introduce a new variable that represents cumulative heat transfer
between the two layers. This permits us to integrate some of the equa-
tions. We show that finding traveling waves is equivalent to finding orbits
connecting certain equilibria in a system of five ODEs, in which the wave
speed is a parameter.

If there is no heat transfer between the layers, the two-layer problem
reduces to two decoupled one-layer problems. Such one-layer problems are
studied in Section 4. A system of two ODEs, in which the wave speed is
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a parameter, governs the existence of traveling waves. We prove that for
a range of wave speeds, there exist connections from a saddle to a non-
hyperbolic equilibrium. For one value of the wave speed, the connection
is strong. The other connections arrive at the nonhyperbolic equilibrium
along its center direction.

Numerical results, along with theoretical considerations, indicate that
only the strong connection corresponds to traveling combustion fronts in
solutions of the PDE for physically important initial conditions. A simi-
lar fact was observed in [7]. We therefore, focus our attention on strong
connections.

In Section 5, we begin the analysis of the 5-dimensional ODE system.
We identify equilibria and determine their eigenvalues.

We study separately, in Sections 6 and 7, respectively, the cases of
large and small heat transfer between the two layers. These two cases are
accessible to a rigorous geometric singular perturbation treatment.

When the heat transfer coefficient is large, we show that the two-layer
system is essentially a one-layer system with two types of fuel. We show
that for all values of the system parameters, strong traveling waves exist
for sufficiently large heat transfer coefficient. The temperatures in the two
layers stay close throughout the wave.

When the heat transfer coefficient is small, we show that strong
traveling waves exist for a small range of system parameters, near the
codimension-one manifold M of parameter values for which the two lay-
ers individually admit strong traveling waves with the same speed. The
waves of the two-layer system have a fast-changing part and a slowly
changing part. In the fast part, where combustion occurs, the solution
jumps quickly from the unburned state to an intermediate state with (typ-
ically) different combustion front temperatures in each layer. Within the
fast jump, the solution typically jumps first in one layer, then the other. In
other words, combustion does not occur simultaneously in the two layers
as it does for large heat transfer coefficient. In the slow part of the wave,
behind the combustion zone, the temperature of the two layers slowly
equilibrates due to heat transfer between the layers.

For fixed small heat transfer coefficient, as the system parameters
move away from M, the separation between the combustion fronts in the
two layers increases. Of course, if the gap is large enough, such a traveling
wave will not be observed in a reservoir of finite length.

A Melnikov integral calculation needed in Section 7 is posponed to
Section 8.

In Section 9, we present numerical simulations of the PDE that show
the development of the traveling wave that we have found theoretically.
The features of the traveling wave that we have identified are clearly seen.
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We also present ODE simulations that show the traveling wave directly
as a connecting orbit. Details of the numerical method that we use for
the PDE, including a discussion of convergence, are deferred to a separate
paper.

Our results are consistent with the possibility that traveling waves
exist for all values of the system parameters and heat transfer coefficient.
It may be possible to prove this using Conley index techniques. Never-
theless, the features of the wave that we find by the geometric singular
perturbation analysis are clearly of importance.

2. MODEL

We consider a horizontal one-dimensional porous medium consisting
of two parallel layers, each with an initially available concentration of a
solid fuel such as coke. The space variable is x, 0<x<l, and time is t , t >
0. A schematic of the medium geometry is shown in Figure 1. The chem-
ical reaction in each layer takes the simple form

[solid reactant] + [gaseous reactant] → [gaseous product] + [heat].

(2.1)

To formulate balance equations, we assume that gas, rock matrix,
and fuel are locally and at all times in thermal equilibrium in each layer.
Hence, only one temperature is used for the energy balance in each layer.
Porosity in each layer is assumed constant and independent of the the fuel
concentration. Heat loss to the surrounding rock formation is neglected.
However, a reaction rate, longitudinal heat conduction, and heat transfer
between the two layers are taken into account.

Subscripts g, r, and c refer to oxygen, rock, and coke, respectively,
and the subscript s refers to an entire layer. Subscripts 1 and 2 designate
the two layers.

In the ith layer, the state variables depending on (x, t) are tempera-
ture Tsi , fuel concentration ηci , oxygen mass fraction in the gas phase Yi ,
seepage velocity vgi , and pressure psi .

layer 1 

layer 2

Figure 1. Porous medium.
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The other relevant quantities in the ith layer are gas density ρgi , given
by a layer-independent equation of state ρgi = ρg(Tsi , psi ); rock density
ρri ; porosity φi ; thermal conductivity λsi ; heat capacity of gas at constant
pressure cgi ; specific heat of rock cri ; rate of coke consumption in the
chemical reaction ri ; mass–weighted stoichiometric coefficients for oxygen
and gas mi and mgi , respectively (see [1]). The quantity mgi may be posi-
tive, negative, or zero, depending on whether the amount of gas produced
by the reaction is more than, less than, or equal to the amount of gas
consumed by it. Quantities assumed to be the same for both layers are:
specific heat of coke cc; heat of reaction Qc; flow resistance appearing in
Darcy’s law Ks , which is directly proportional to rock permeability and
inversely proportional to gas viscosity. Finally, the coefficient of heat trans-
fer between the two layers is denoted by Ql .

The following equations are assumed to hold in the ith layer, i=1,2:
Balance of energy

∂

∂t

(
φiρgi cgi Tsi + (1−φi)ρri cri Tsi +ηci ccTsi

)

=− ∂

∂x

(
ρgi cgi vgi Tsi

)+Qcri −Ql(Tsi −Ts3−i )+λsi
∂2Tsi

∂x2
. (2.2)

Balance of fuel mass

∂ηci

∂t
=−ri . (2.3)

Balance of oxygen mass

∂

∂t
(φiρgi Yi)+

∂

∂x
(ρgi vgi Yi)=−miri . (2.4)

Balance of total gas mass

∂

∂t
(φiρgi )+

∂

∂x
(ρgi vgi )=mgi ri . (2.5)

Darcy’s law

vgi =−Ks ∂psi
∂x

. (2.6)

The rate of coke consumption in the chemical reaction, in each layer,
is assumed to be given by a version of Arrhenius’s law:

ri =Aci (Yipsi )α ηci e−E/RTsi if Tsi >0, and ri =0 if Tsi �0, (2.7)

where Aci is the Arrhenius constant, E the activation energy, α the order
of the gaseous reaction rate, and R is the gas constant. E and α are
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assumed to be the same for both layers. Temperature has been shifted so
that the ignition temperature is Tsi =0.

We introduce dimensionless variables for space and time,

x̃= x

x∗ , t̃= t

t∗
, (2.8)

where x∗ and t∗ are reference values for space and time, respectively. A
dimensionless seepage velocity in the ith layer is given by

vi = t∗vgi
x∗ . (2.9)

We also introduce dimensionless variables for temperature, fuel con-
centration, pressure, and gas density in the ith layer,

Ti = Tsi

T ∗ , pi = psi

p∗ , ρi = ρgi

ρ∗
g

and ηi = ηci

ηoci
, (2.10)

where T ∗, p∗, and ρ∗
g are reference values for temperature, pressure, and

gas density, respectively; and ηoci is the initial fuel concentration in the ith
layer. Thus ηi is the fraction of coke remaining in the ith layer, 0�ηi �1.
The reference gas density ρ∗

g is obtained from the reference temperature
and pressure using the state equation.

With these dimensionless variables, and after dropping the tildes from
x and t to simplify the notation, the systems (2.2)–(2.6) becomes

∂

∂t

((
φiρ

∗
gρicgi + (1−φi)ρri cri +ηoci ccηi

)
Ti

)
=− ∂

∂x

(
ρ∗
gρicgiviTi

)

+ t
∗ηociAciQc(p

∗)α

T ∗ h(Ti, ηi, Yi, pi)−t∗Ql(Ti−T3−i )+ t∗λsi
(x∗)2

∂2Ti

∂x2
, i=1,2,

(2.11)

∂ηi

∂t
=−t∗Aci (p∗)αh(Ti, ηi, Yi, pi), i=1,2, (2.12)

∂

∂t
(φiρ

∗
gρiYi)+

∂

∂x
(ρ∗
gρiviYi)=−t∗miρociAci (p∗)αh(Ti, ηi, Yi, pi), i=1,2,

(2.13)

∂

∂t
(φiρ

∗
gρi)+

∂

∂x
(ρ∗
gρivi )= t∗mgiρociAci (p∗)αh(Ti, ηi, Yi, pi), i=1,2,

(2.14)



Porous Medium with Two Layers

vi =− t
∗p∗Ks
(x∗)2

∂pi

∂x
, i=1,2, (2.15)

where h is the nondimensional function

h(T , η, Y,p)= (Yp)αη e−E/RT ∗T if T >0, and h(T , η, Y,p)=0

if T �0. (2.16)

Finally, we divide (2.11) by the mean value ¯ρrcr = 1
2

(
(1 −φ1)ρr1cr1 +

(1 − φ2)ρr2cr2
)
, and (2.13) and (2.14) by the reference gas density ρ∗

g =
ρg(T

∗, p∗). The reason for dividing Eq. (2.11) by the given constant is
that all parameters in the resulting equation vary in a range convenient
for numerical computation. We obtain the system

∂

∂t

(
(ai +biηi)Ti

)+ ∂

∂x
(civiTi)=di h(Ti, ηi, Yi, pi)−q(Ti −T3−i )+λi ∂

2Ti

∂x2
,

i=1,2, (2.17)

∂ηi

∂t
=−Ai h(Ti, ηi, Yi, pi), i=1,2, (2.18)

∂

∂t
(φiρiYi)+ ∂

∂x
(ρiviYi)=−Bi h(Ti, ηi, Yi, pi), i=1,2, (2.19)

∂

∂t
(φiρi)+ ∂

∂x
(ρivi )=Di h(Ti, ηi, Yi, pi), i=1,2, (2.20)

vi =−K ∂pi

∂x
, i=1,2, (2.21)

0<x<l, t >0, where

ai =
φiρ

∗
gρicgi + (1−φi)ρri cri

¯ρrcr , bi =
ηoci cc

¯ρrcr , ci =
ρ∗
gρicgi

¯ρrcr , (2.22)

Ai = t∗Aci (p∗)α, di =
Aiη

o
ci
Qc

T ∗ ¯ρrcr , λi = t∗λsi
(x∗)2 ¯ρrcr

, q= t∗Ql

¯ρrcr , (2.23)

Bi =
miAiη

o
ci

ρ∗
g

, Di =
mgiAiη

o
ci

ρ∗
g

, and K= t∗p∗Ks
(x∗)2

. (2.24)



Da Mota and Schecter

The quantities defined in (2.22)–(2.24) depend on the physical properties
of the two layers, and they are all nonnegative, except Di , which, depend-
ing on the stoichiometric coefficient mgi , may be positive, negative, or zero.

From now on, we shall assume that the fluids are incompressible, and
we shall neglect volume and pressure changes due to the chemical reac-
tion. These assumptions simplify our equations and isolate the main tem-
perature and fuel consumption effects. Thus, for i = 1,2, ρi is constant,
independent of temperature and pressure; mgi =0; and therefore, Di =0.

We are interested in the physical situation in which gas is injected into
the porous medium at x=0, all the coke burns, and a reaction front prop-
agates to the right. Since Di=0, from (2.20) we have ∂vi

∂x
=0, so vi depends

on time only. One can relate it to boundary conditions at the injection
end. For simplicity we assume it to be constant. Also, from (2.21), we see
that pi can be easily calculated using the injection pressure.

Equations (2.17) and (2.18) are coupled with Eq. (2.19) only by the
factor (Yipi)α in the function h. For simplicity we take this factor to be a
known constant average value.

With these simplifications, from Eqs. (2.17) and (2.18) we obtain the
following system modeling temperature and fuel concentration. To sim-
plify the notation we rename the temperature and the fuel concentration
in the two layers u=T1, y=η1, v=T2, and z=η2.

∂

∂t

(
(a1 +b1y)u

)+ ∂

∂x
(c1u)=d1f (u, y)−q(u−v)+λ1

∂2u

∂x2
, (2.25)

∂y

∂t
=−A1f (u, y), (2.26)

∂

∂t

(
(a2 +b2z)v

)+ ∂

∂x
(c2v)=d2f (v, z)−q(v−u)+λ2

∂2v

∂x2
, (2.27)

∂z

∂t
=−A2f (v, z), (2.28)

0<x<l, t >0. Here f is defined by

f (w,η)=ηe−E/RT ∗w if w>0, and f (w,η)=0 if w�0. (2.29)

All parameters are those defined in (2.22) and (2.23), except A1 and A2,
now defined by

Ai = t∗Aci (p∗Yipi)α, i=1,2. (2.30)
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3. TRAVELING WAVE SYSTEM

We shall look for combustion fronts as traveling wave solutions of the
system (2.25)–(2.28). We therefore replace the spatial domain 0<x<l by R.

Following [19] we define

�=
{
h : R→R :h∈C1, lim

ξ→±∞
h(ξ) exists, and lim

ξ→±∞
dh

dξ
=0

}
.

Let �n=�×· · ·×� (n times).
Given X= (h1, . . . , hn) in �n, let

X± = lim
ξ→±∞

X(ξ)= lim
ξ→±∞

(
h1(ξ), . . . , hn(ξ)

)= (h±
1 , . . . , h

±
n ). (3.1)

Definition 3.1. A traveling wave of the systems (2.25)–(2.28) with
speed σ , connecting a state W0 = (u0, y0, v0, z0) on the left to a state W1 =
(u1, y1, v1, z1) on the right, is a solution W(ξ)= (u(ξ), y(ξ), v(ξ), z(ξ)) in
�4, with ξ =x−σ t , satisfying the boundary conditions

W− =W0 and W+ =W1. (3.2)

We are interested in traveling waves that connect a burned state (one
with y = z= 0) on the left to an unburned state (one with y = z= 1) on
the right. We recall (see the paragraph that includes Eq. (2.7)) that the
temperature scale has been shifted so that, in accordance with Arrhenius’s
law, the ignition temperature is u = 0. We shall assume that the back-
ground reservoir temperature is also u= 0. In other words, combustion
does not occur at the background reservoir temperature; it begins at any
higher temperature. In the simulations reported in Section 9, the travel-
ing waves that develop have the temperature at the unburned state equal
to the background reservoir temperature. This seems to be the case when-
ever the initial temperature profile is everywhere greater than or equal to
the background reservoir temperature. Since this is the physically relevant
case, we consider only traveling waves with unburned states that are at the
background reservoir temperature in both layers, i.e., u=v=0. The follow-
ing proposition gives a necessary and sufficient condition for the existence
of such a traveling wave of (2.25)–(2.28).

Proposition 3.2. If W(ξ)= (
u(ξ), y(ξ), v(ξ), z(ξ)

)
is a traveling wave

with speed σ of the system (2.25)–(2.28) connecting WL = (uL,0, vL,0) on
the left to WR = (0,1,0,1) on the right, then there exist a function w in �
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and a number wL such that X(ξ)=(u(ξ), y(ξ), v(ξ), z(ξ),w(ξ)) is a solution
of the system

u̇ = 1
λ1

(
−σ

(
a1u+b1uy+ d1

A1
y− d1

A1

)
+ c1u−w

)
, (3.3)

ẏ = A1

σ
f (u, y), (3.4)

v̇ = 1
λ2

(
−σ

(
a2v+b2vz+ d2

A2
z− d2

A2

)
+ c2v+w

)
, (3.5)

ż = A2

σ
f (v, z), (3.6)

ẇ = q(v−u) (3.7)

satisfying

X− =XL= (uL,0, vL,0,wL) and X+ =XR = (0,1,0,1,0). (3.8)

Conversely, if X(ξ) = (
u(ξ), y(ξ), v(ξ), z(ξ),w(ξ)

)
is a solution in �5 of

(3.3)–(3.7) satisfying (3.8), then W(ξ)= (u(ξ), y(ξ), v(ξ), z(ξ)) is a traveling
wave with speed σ of the systems (2.25)–(2.28) connecting WL to WR.

Proof. Suppose W(ξ)= (
u(ξ), y(ξ), v(ξ), z(ξ)

)
, ξ = x − σ t , is a trav-

eling wave of (2.25)–(2.28) connecting WL to WR. Substituting W(ξ) in
(2.25)–(2.28), we have

−σ d
dξ

(
(a1 +b1y)u

)+ d

dξ
(c1u) = d1f (u, y)−q(u−v)+λ1

d2u

dξ2
, (3.9)

σ
dy

dξ
= A1f (u, y), (3.10)

−σ d
dξ

(
(a2 +b2z)v

)+ d

dξ
(d2v) = d2f (v, z)+q(u−v)+λ2

d2v

dξ2
, (3.11)

σ
dz

dξ
= A2f (v, z). (3.12)

Integrating Eqs. (3.10) and (3.12) from ξ to ∞, and using the boundary
conditions y(∞)= z(∞)=1, we obtain

σ −σy=A1

∫ ∞

ξ

f (u, y) dξ̃ and σ −σz=A2

∫ ∞

ξ

f (v, z) dξ̃ . (3.13)

Therefore, the integrals converge, and
∫ ∞

ξ

f (u, y) dξ̃ = σ

A1
(1−y) and

∫ ∞

ξ

f (v, z) dξ̃ = σ

A2
(1− z). (3.14)
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Integrating (3.9) and (3.11) from ξ to ∞, and using the boundary condi-
tions u(∞)=v(∞)= u̇(∞)= v̇(∞)=0, we obtain

λ1u̇=−σ(a1 +b1y)u+ c1u+d1

∫ ∞

ξ

f (u, y) dξ̃ −
∫ ∞

ξ

q(u−v) dξ̃ , (3.15)

λ2v̇=−σ(a2 +b2z)v+ c2v+d2

∫ ∞

ξ

f (v, z)dξ̃ −
∫ ∞

ξ

q(v−u)dξ̃ . (3.16)

Since the integrals in (3.14) converge, so do the remaining integrals in
(3.15) and (3.16). Then the system (3.3)–(3.7) is obtained by defining

w=
∫ ∞

ξ

q(u−v) dξ̃ (3.17)

and substituting (3.14) and (3.17) into (3.15) and (3.16).
We still must show that w(−∞) is finite, w(∞)= 0, and ẇ(±∞)= 0.

From (3.17), we see immediately that w(∞)= 0. The fact that w(−∞)=∫∞
−∞ q(u−v) dξ̃ is finite follows from integrating (3.15) or (3.16) from ξ =

−∞ to ξ =∞ and using (3.14) and the boundary conditions at ξ =−∞.
From (3.17), we see that ẇ=q(u−v). For q=0 we have immediately that
ẇ=0. For q >0 we see from the boundary conditions that ẇ(−∞)=uL −
vL and ẇ(∞)= 0 − 0 = 0. The fact that

∫∞
−∞ q(u− v) dξ̃ converges implies

that uL =vL.
Conversely, suppose that X(ξ) = (

u(ξ), y(ξ), v(ξ), z(ξ),w(ξ)
)
,

ξ=x−σ t , is a solution in �5 of the systems (3.3)–(3.7) satisfying the bound-
ary condition (3.8). Differentiating (3.3) and (3.5) with respect ξ , and using
(3.4), (3.6), and (3.7), we easily complete the proof.

Where convenient, we shall write (3.3)–(3.7) as follows:

U̇ = G(U,w,σ,
), (3.18)

V̇ = H(V,w,σ,
), (3.19)

ẇ = q(v−u) (3.20)

with U = (u, y), V = (v, z), G= (G1,G2), H = (H1,H2), and 
 the vector
of system parameters (including the parameters that appear in the defini-
tion of f in (2.29)). We have X=(U,V,w). We shall also write the systems
(3.18)–(3.20) as follows:

Ẋ=F(X,σ,
,q)= (G(U,w,σ,
),H(V,w,σ,
), q(v−u)). (3.21)

All system parameters are assumed to be positive.
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4. COMBUSTION FRONTS IN ONE LAYER

If q=0, the PDEs (2.25) and (2.26), and (2.27) and (2.28), which gov-
ern layers 1 and 2, respectively, decouple. Traveling waves of (2.25) and
(2.26) that connect an unburned state to a burned state satisfy (3.18) with
w=0, i.e., U̇ = Ĝ(U,σ,
)=G(U,0, σ,
), or

u̇ = 1
λ1

(
−σ

(
a1u+b1uy+ d1

A1
y− d1

A1

)
+ c1u

)
, (4.1)

ẏ = A1

σ
f (u, y). (4.2)

In this section, we study this system. Our notation will often suppress the
dependence on 
, but will always show the dependence on σ .

Physically relevant solutions must have 0�y�1. However, in order to
have a clear picture of solutions in this region, it is convenient to consider
all solutions in the upper half plane y�0.

We note that in the open first quadrant u> 0, y > 0, we have ẏ > 0.
When y=0, ẏ=0, so the u-axis is invariant. Also, for u�0, ẏ=0, so the
vector field is horizontal (see Figure 2).

We assume

(A1) σ > c1
a1

.

In particular, σ is positive. Note that c1
a1

is small because the rock
density is much larger than the gas density. From (A1), for y�0, u̇ is pos-
itive, 0, or negative according to whether (u, y) is below, on, or above the
curve

u= σd1(1−y)
A1(σa1 +σb1y− c1)

. (4.3)

This curve crosses the u-axis at

uL(σ)= σd1

A1(σa1 − c1)
>0. (4.4)

u

y

uL( )

1 ?
u=0
.

s

Figure 2. Phase portrait of (4.1) and (4.2).
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Thus the the equilibria of the systems (4.1) and (4.2) in the region y� 0
are

(
uL(σ),0

)
and the curve given by (4.3) with y� 1. This curve lies in

the nonphysical region y >1 except for the point (0,1).
We therefore look for solutions in �2 of (4.1) and (4.2) that satisfy

the boundary conditions

U− =UL(σ)=
(
uL(σ),0

)
and U+ =UR = (0,1). (4.5)

Solutions of (4.1) and (4.2), (4.5) correspond to traveling waves with speed
σ in a one-layer system that connect the burned state

(
uL(σ),0

)
on the

left to the unburned state (0,1) on the right.
Note that for σ < c1

a1
we have uL(σ)<0. Since the vector field is hor-

izontal there, traveling waves with left state
(
uL(σ ),0

)
cannot exist.

We have

DUĜ(UL(σ), σ )=
(
a11 a12
0 a22

)
and DUĜ(UR,σ )=

(
b11 b12
0 0

)
, (4.6)

where

a11 =−σa1 − c1

λ1
, a12 =− σ

λ1

(
b1uL(σ )+ d1

A1

)
, a22 = A1

σ
fy(uL(σ ),0),

b11 =−σa1 +σb1 − c1

λ1
, and b12 =− σd1

λ1A1
. (4.7)

Using (A1), we see that the eigenvalues at UL(σ) are a11 < 0 and
a22 > 0. Corresponding eigenvectors are (1,0) and (a12, a22 − a11). Thus
UL(σ) is a saddle, and its stable manifold is the u-axis. The vector
(a12, a22 − a11), which is tangent to the unstable manifold of UL(σ), has
first component negative and second component positive.

The eigenvalues at UR are b11<0 and 0, with corresponding eigenvec-
tors (1,0) and (−b12, b11), which has first component positive and second
component negative. The latter is tangent to the center manifold of UR,
which consists of the curve of equilibria in u� 0 and an orbit in u>0.
Since ẏ > 0 when u > 0, motion on this orbit is toward UR. The stable
manifold of UR (and of every equilibrium in u� 0) has horizontal tan-
gent. From center manifold theory [3], points in u> 0 that are near UR
and below its stable manifold lie in orbits that approach UR tangent to its
0 eigenvector. Points in u>0 that are near UR and above its stable mani-
fold lie in the stable manifold of an equilibrium in u<0 (see Figure 2).

Definition 4.1. A connecting orbit of an ODE from a hyperbolic
equilibrium UL to a nonhyperbolic equilibrium UR is called strong if it
lies in the stable manifold of UR. If the connecting orbit corresponds to
a traveling wave of a PDE, the traveling wave is also called strong.
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Theorem 4.2. There is a number σ ∗, with c1
a1
<σ ∗<∞, such that the

system (4.1) and (4.2) has a connecting orbit from UL(σ) to UR if and only
if σ ∗ �σ <∞. The connecting orbit is strong if and only if σ =σ ∗.

Proof. We shall show that, in the region u> 0, the stable manifold
of UR lies below the unstable manifold of UL(σ) for small σ and above
it for large σ . Hence there is an intermediate value σ = σ ∗ for which a
strong connection exists. We shall use a Melnikov integral calculation to
show that σ ∗ is unique.

To study large σ , in (4.1) and (4.2) we let σ = 1
ε

and ξ = εη. Using ′
to denote derivative with respect to η, we obtain

u′ = 1
λ1

(
−
(
a1u+b1uy+ d1

A1
y− d1

A1

)
+ εc1u

)
, (4.8)

y′ = ε2A1f (u, y). (4.9)

For ε = 0, the system (4.8) and (4.9) has the curve of equilibria
u= d1(1−y)

A1(a1+b1y)
, which includes a segment in the first quadrant that joins

(
d1
a1A1

,0
)

to (0,1). This segment of equilibria is normally hyperbolic (the
nonzero eigenvalue is negative). Therefore, for small positive ε it persists
as an invariant curve. Near the u-axis this curve coincides with the unsta-
ble manifold of UL( 1

ε
), and near the y-axis it approaches (0,1) tangent to

its center direction. It therefore contains a connecting orbit of (4.8) and
(4.9) from UL(

1
ε
) to UR that is not strong. Thus for large σ there is a

connecting orbit of (4.1) and (4.2) from UL(σ) to UR that is not strong.
Because the stable manifold of UR is approximately horizontal, we see that
for large σ >0, in the region u>0, the stable manifold of (0,1) lies above
the unstable manifold of UL(σ).

To study small σ > c1
a1

, in (4.1) and (4.2) we let σ = c1
a1

+ τ . Since
uL(σ)→ ∞ as σ → c1

a1
, we also make the change of variables u= 1

s
. We

obtain the following system for s >0 (corresponding to u>0):

s′ = s

λ1

(( c1

a1
+ τ

)(
a1 +b1y+ d1

A1
(y−1)s

)
− c1

)
, (4.10)

y′ = A1a1

c1 +a1τ
ye−

E
R
s . (4.11)

Equilibria of (4.1) and (4.2) with u� 0 are not visible in this system; in
particular, UR has moved to s=∞.
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Setting τ =0 in (4.10) and (4.11), we obtain

s′ = c1

a1λ1
s
(
b1y+ d1

A1
(y−1)s

)
, (4.12)

y′ = A1a1

c1
ye−

E
R
s . (4.13)

There is a unique equilibrium at (s, y)= (0,0), with eigenvalues A1a1
c1

> 0
and 0. The unstable manifold is the y-axis; a center manifold is the s-axis,
on which s′ =− c1d1

A1a1λ1
s2.

For τ >0 this equilibrium perturbs to a repeller at (0,0) and a saddle

at (s,0) with s= A1a
2
1τ

d1(a1τ+c1)
. The saddle is just UL(

c1
a1

+ τ). Given any com-
pact part of the y-axis, for small τ >0 the unstable manifold of the saddle
is near it. Returning to (u, y)-coordinates, we see that the last fact implies
that for small σ > c1

a1
, in the region u> 0, the stable manifold of UR lies

below the unstable manifold of UL(σ), so there is no connection.
Since, in the region u> 0, the stable manifold of UR lies below the

unstable manifold of UL(σ) for small σ and above it for large σ , there is
an intermediate value σ =σ ∗ for which a strong connection exists.

We can define a separation function between Ws(UR) and Wu
(
UL(σ)

)

that is negative (respectively, positive) when the former is below (respec-
tively, above) the latter. For later use we denote the separation function
Ŝ1(σ,
), indicating the dependence on 
 and that it is the separation
function for layer 1.

At a point (σ ∗,
∗) where the separation is 0 (i.e., where there is a
strong connection), let the connecting solution be U∗(ξ)= (

u∗(ξ), y∗(ξ)
)
,

and let

ψ̂1(ξ)= exp
(

−
∫ ξ

0
div Ĝ

(
U∗(τ ), σ ∗,
∗)dτ

)(−ẏ∗(ξ) u̇∗(ξ)
)
, (4.14)

a row vector. Then for r equal to σ or any component of 
, we have the
well-known Melnikov integral formula: up to a positive multiple,

∂Ŝ1

∂r
(σ ∗,
∗)=

∫ ∞

−∞
ψ̂1(ξ)

∂Ĝ

∂r

(
U∗(ξ), σ ∗,
∗)dξ. (4.15)

We remark that Melnikov integrals can have an additional term when
there is a nonhyperbolic equilibrium present, if the equilibrium changes as
parameters vary [4, 16]. Here, however, the nonhyperbolic equilibrium is
always (0,1).
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To compute ∂Ŝ1
∂σ
(σ ∗,
∗) using (4.15), we note that along any solution

U(ξ)= (u(ξ), y(ξ)),
(−ẏ(ξ) u̇(ξ)) ∂Ĝ

∂σ

(
U(ξ), σ,


)= ẏ · 1
λ1

(
a1u+b1uy+ d1

A1
y− d1

A1

)

−u̇ · A1

σ 2
f (u, y). (4.16)

From the phase portrait (Figure 2), u̇ < 0 along any connection from UL
to UR, so, using (4.3),

u>
σd1(1−y)

A1(σa1 +σb1y− c1)
>

σd1(1−y)
A1(σa1 +σb1y)

= d1(1−y)
A1(a1 +b1y)

.

Therefore in (4.16), the quantity a1u+ b1uy + d1
A1
y − d1

A1
must be positive

along any connection. Also, ẏ >0 in the first quadrant, where any connec-
tion lies. It follows that (4.16) is positive along any strong connection, so
∂Ŝ1
∂σ
(σ ∗,
∗) is positive. Therefore, at any strong connection the separation

function goes from negative to positive as σ increases. It follows that the
value of σ at which a strong connection exists is unique.

Numerical simulations of the one-layer system (2.25) and (2.26) with
q = 0 indicate that only combustion fronts corresponding to strong con-
nections of (4.1) and (4.2) actually form. In particular, different injection
temperatures at the left give rise to traveling waves with a speed σ ∗ that is
independent of the injection temperature. Largely for this reason, we reject
the other connections as nonphysical.

There are at least two additional reasons to reject the other connec-
tions:

(1) If
(
u∗(ξ), y∗(ξ)

)
is a strong connection, then for any finite ξ0,

∫∞
ξ0
u∗(ξ)

dξ is finite, because u∗(ξ) approaches 0 exponentially. Thus the total
heat ahead of the combustion front is finite. This conclusion does not
hold for connections that are not strong. However, in simulations, the
initial temperature profile u(x,0) typically has

∫∞
x0
u(x,0) dx finite for

any finite x0; in fact, the initial temperature is typically equal to the
background reservoir temperature, which we have taken to be 0, to
the right of some point. For such initial conditions, which are the
physically relevant ones, one can wonder how there could develop an
infinite amount of heat ahead of the combustion front.

(2) In other combustion contexts, the addition to the equations of pertur-
bation terms such as heat loss to the rock formation causes the zero
eigenvalues at unburned states to become positive, thus eliminating
connections that are not strong. (However, the burned states remain
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equilibria, even though they are nonhyperbolic before perturbation.)
(See [18]).

5. EQUILIBRIA OF THE TWO-LAYER TRAVELING WAVE
SYSTEM

In the remainder of the paper, we study the two-layer traveling wave
systems (3.18)–(3.20). Analagously to (A1), we assume throughout the rest
of the paper:

(B1) σ >max
(
c1
a1
,
c2
a2

)
.

An easy consequence of (B1) is

σ >
c1 + c2

a1 +a2
. (5.1)

In this section, we investigate the equilibria of (3.18)–(3.20). We con-
sider the physically relevant region 0�y�1, 0�z�1. For q=0 and given
(σ,
), the equilibria of (3.3)–(3.7) in this region include: (1) a unique
point with u= v = 0, XR = (0,1,0,1,0); and (2) a curve of points with
y= z=0,

XL(w,σ,
) = (uL(w,σ,
),0, vL(w,σ,
),0,w
)
,

uL(w,σ,
) = σd1−A1w
A1(σa1−c1)

, vL(w,σ,
)= σd2+A2w
A2(σa2−c2)

.
(5.2)

There are two additional curves of equilibria in the physical region, one
with y=v=0, and one with u= z=0, that we shall not consider here.

For q>0 and given (σ,
), there are just two equilibria in the physical
region: (1) XR and (2) XL(σ,
)=XL

(
wL(σ,
), σ,


)
, where the function

wL(σ,
) is obtained by solving the equation

v−u =vL(w,σ,
)−uL(w,σ,
)=
(

σd2
A2(σa2−c2)

− σd1
A1(σa1−c1)

)

+
(

1
σa1−c1

+ 1
σa2−c2

)
w=0

(5.3)

for w. Then XL(σ,
)=
(
uL(σ,
),0, vL(σ,
),0,wL(σ,
)

)
with

uL(σ,
) =vL(σ,
)=σ d1A2+d2A1

A1A2

(
σ(a1+a2)−(c1+c2)

) ,

wL(σ,
) =σ d1A2(σa2−c2)−d2A1(σa1−c1)

A1A2

(
σ(a1+a2)−(c1+c2)

) .
(5.4)

From (B1) and (5.1), the denominators in (5.3) and (5.4) are positive. Note
that XL(σ,
) is an equilibrium for any q.
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Proposition 5.1. (1) For q=0, those equilibria XL(w,σ,
) of (3.18)–
(3.20) for which uL(w,σ,
)> 0 and vL(w,σ,
)> 0 have two negative
eigenvalues, one zero eigenvalue, and two positive eigenvalues. The equi-
libria XR have two negative eigenvalues and three zero eigenvalues.

(2) For q > 0, the equilibria XL(σ,
) of (3.18)–(3.20) all have uL(σ,
)=
vL(σ,
)>0. They have two eigenvalues with negative real part and three
positive eigenvalues. The equilibria XR have two negative eigenvalues,
two zero eigenvalues, and one positive eigenvalue.

Proof. We have uL(σ,
) = vL(σ,
) > 0 by (5.4). The Jacobian
matrix of (3.18)–(3.20) is

J = DXF(X,σ,
,q)

=

⎛

⎜
⎜⎜
⎜⎜⎜
⎝

− 1
λ1

(
σ(a1 +b1y)− c1

) − σ
λ1

(
b1u+ d1

A1

)
0 0 − 1

λ1
A1
σ
fu(u, y)

A1
σ
fy(u, y) 0 0 0

0 0 − 1
λ2

(
σ(a2 +b2z)− c2

) − σ
λ2

(
b2v+ d2

A2

) 1
λ2

0 0 A2
σ
fv(v, z)

A2
σ
fz(v, z) 0

−q 0 q 0 0

⎞

⎟
⎟⎟
⎟⎟⎟
⎠

.

(5.5)

At a point with y= z=0, (5.5) becomes

J =DXF(u,0, v,0, σ,
,q)=

⎛

⎜⎜⎜⎜
⎝

a11 a12 0 0 − 1
λ1

0 a22 0 0 0
0 0 a33 a34

1
λ2

0 0 0 a44 0
−q 0 q 0 0

⎞

⎟⎟⎟⎟
⎠

(5.6)

with

a11 =− 1
λ1
(σa1 − c1), a12 =− σ

λ1

(
b1u+ d1

A1

)
, a22 = A1

σ
fy(u,0),

a33 =− 1
λ2
(σa2 − c2), a34 =− σ

λ2

(
b2v+ d2

A2

)
, a44 = A2

σ
fz(v,0).

We have

det(�I−J )= (�−a22)(�−a44)

(
�3 − (a11 +a33)�

2

+
(
a11a33 − q

λ1
− q

λ2

)
�+qa11

λ2
+qa33

λ1

)
.
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Thus, two eigenvalues of (5.6) are a22 and a44; they are positive if u and
v are positive. For q = 0, the other three eigenvalues are a11< 0, a33< 0,
and 0. For q > 0, the other three eigenvalues have sum a11 + a33< 0 and
product −q( a11

λ2
+ a33

λ1

)
> 0. Hence two have negative real part and one is

positive.
At XR, (5.5) becomes

J =DXF(XR, σ,
,q)=

⎛

⎜⎜
⎜
⎜
⎝

b11 b12 0 0 − 1
λ1

0 0 0 0 0
0 0 b33 b34

1
λ2

0 0 0 0 0
−q 0 q 0 0

⎞

⎟
⎟
⎟⎟
⎠

(5.7)

with b11 = − 1
λ1
(σa1 + σb1 − c1), b12 = − σd1

λ1A1
, b33 = − 1

λ2
(σa2 + σb2 − c2),

and b34 =− σd2
λ2A2

. We have

det(�I−J )=�2
(
�3 − (b11+b33)�

2+
(
b11b33 − q

λ1
− q

λ2

)
�+qb11

λ2
+ qb33

λ1

)
.

Thus, two eigenvalues of (5.7) are 0. For q=0, the other three eigenvalues
are b11<0, b33<0, and 0. For q >0, two have negative real part and one
is positive.

Since for q > 0 the unstable manifold of XL(σ,
) has dimension 3
and the center-stable manifold of XR has dimension 4, connections are
expected to exist for a range of σ . However, since the stable manifold of
XR has dimension 2, strong connections are expected to exist only for iso-
lated values of σ . As in the one-layer case, numerical simulations indicate
that only combustion fronts corresponding to strong connections actually
form. Therefore, in the remainder of the paper we focus on the existence
of strong connections from XL(σ,
) to XR.

6. COMBUSTION FRONTS IN TWO LAYERS FOR LARGE q

In this section, we show that if the heat transfer coefficient q is suffi-
ciently large, then strong traveling waves of the two-layer system exist. We
fix the values of the system parameters, and generally suppress dependence
on the system parameters in the notation.

Theorem 6.1. For any fixed values 
 of the system parameters, there
exists a number q∗ such that for all q>q∗, there is a wave speed σ ∗(q) such
that the traveling wave systems (3.18)–(3.20) with σ = σ ∗(q) has a strong
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connection from XL(σ
∗,
) to XR. Moreover, u(ξ) and v(ξ) are close along

the connection.

The proof also shows that for any compact subset K of system
parameter space, a single value of q∗ can be chosen. However, we do not
know if the wave speed σ ∗(q) is unique.

The remainder of this section is devoted to proving Theorem 6.1. In
the course of the proof, we shall see that for large q, the system is close
one that describes combustion in one layer with two types of fuel (see
(6.18)–(6.20)).

The plan of the proof is as follows. To study the traveling wave sys-
tems (3.3)–(3.7) for large q, we make the change of variables

q= 1
ε2
, w= ω

ε
, ξ = εη. (6.1)

In the new system, we identify a 3-dimensional normally hyperbolic invari-
ant manifold S(σ,
, ε) on which u≈v. After restricting to S(σ,
, ε), the
connections we seek correspond to connecting orbits in a 3-dimensional
system from a hyperbolic equilibrium with 2-dimensional unstable mani-
fold to a nonhyperbolic equilibrium with 1-dimensional stable manifold.
This system, to lowest order, describes combustion in one layer with two
types of fuel; the layer has physical properties intermediate between those
of the original layers. As in the proof of Theorem 4.2, we show that for
small (respectively, large) σ , the stable manifold lies below (respectively,
above) the unstable manifold. Therefore, they meet for some intermediate
σ . Actually, we describe the relative positions of these manifolds not in
these terms, but in terms of where the stable manifold leaves a certain box.

Let

h(u, y, σ,
) = 1
λ1

(
−σ

(
a1u+b1uy+ d1

A1
y− d1

A1

)
+ c1u

)
,

k(v, z, σ,
) = 1
λ2

(
−σ

(
a2v+b2vz+ d2

A2
z− d2

A2

)
+ c2v

)
.

Making the change of coordinates (6.1) and using ′ to denote d
dη

, we
obtain the system

u′ = εh(u, y, σ,
)− ω

λ1
, (6.2)

y′ = ε
A1

σ
f (u, y), (6.3)
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v′ = εk(v, z, σ,
)+ ω

λ2
, (6.4)

z′ = ε
A2

σ
f (v, z), (6.5)

ω′ = v−u. (6.6)

We set ε=0 in (6.2)–(6.6) and obtain the linear system

u′ = − ω

λ1
, (6.7)

y′ = 0, (6.8)

v′ = ω

λ2
, (6.9)

z′ = 0, (6.10)

ω′ = v−u. (6.11)

There is a 3-dimensional plane of equilibria S = {(u, y, v, z,ω) : v =
u and ω = 0}. The eigenvalues of the systems (6.7)–(6.11) are 0, 0, 0,

±( 1
λ1

+ 1
λ2

) 1
2 , so S is a normally hyperbolic.

For small ε>0, any compact part of S perturbs to a normally hyper-
bolic invariant manifold S(σ,
, ε), given by equations of the form

v = A(u, y, z, σ,
, ε)=u+ εa(u, y, z, σ,
)+O(ε2), (6.12)

ω = B(u, y, z, σ,
, ε)= εb(u, y, z, σ,
)+O(ε2). (6.13)

Since each S(σ,
, ε) is invariant, we can differentiate (6.12) and (6.13)
with respect to η and obtain

v′ = u′ + ε
(
∂a

∂u
u′ + ∂a

∂y
y′ + ∂a

∂z
z′
)

+O(ε2), (6.14)

ω′ = ε

(
∂b

∂u
u′ + ∂b

∂y
y′ + ∂b

∂z
z′
)

+O(ε2). (6.15)

Substituting (6.2)–(6.6) and (6.12) and (6.13) into (6.14) and (6.15), we
obtain

εk
(
u+O(ε), z, σ,
)+ 1

λ2

(
εb+O(ε2)

)= εh(u, y, σ,
)

− 1
λ1

(
εb+O(ε2)

)+ε
(
∂a

∂u
O(ε)+∂a

∂y
O(ε)+ ∂a

∂z
O(ε)+O(ε)

)
, (6.16)

ε
(
a+O(ε))= ε

(
∂b

∂u
O(ε)+ ∂b

∂y
O(ε)+ ∂b

∂z
O(ε)+O(ε)

)
. (6.17)
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From the order ε terms in (6.16) and (6.17), we obtain

a=0 and b= λ1λ2

λ1 +λ2

(
h(u, y, σ,
)−k(u, z, σ,
)).

We obtain the differential equation on S(σ,
, ε) to order ε, in the
variables (u, y, z), by substituting (6.12) and (6.13) into (6.2) and (6.3) and
(6.5). In the fast time ξ = εη we obtain

u̇ = 1
λ1 +λ2

(
λ1h(u, y, σ,
)+λ2k(u, z, σ,
)

)
, (6.18)

ẏ = A1

σ
f (u, y), (6.19)

ż = A2

σ
f (u, z) (6.20)

plus terms of order ε.
We first study (6.18)–(6.20), i.e., we set ε = 0. This system describes

one layer with two types of fuel and intermediate physical properties.
From (6.18) we have

(∂u̇
∂u
,
∂u̇

∂y
,
∂u̇

∂z

)
=− λ1λ2

λ1 +λ2

(
σ(a1 +a2 +b1y+b2z)− (c1 + c2), σ

d1

A1
, σ
d2

A2

)
.

(6.21)

For y� 0 and z� 0, (5.1) implies that all three components of (6.21) are
negative. We have u̇=0 if and only if

u=
σ
(
d1
A1
(1−y)+ d2

A2
(1− z))

σ(a1 +a2 +b1y+b2z)− (c1 + c2)
. (6.22)

Note that uL(σ,
), defined by (5.4), is given by setting y= z= 0 in
(6.22). We consider the region R(σ,
) in uyz-space defined by 0 � u�
uL(σ,
), 0�y�1, 0�z�1. The equilibria of (6.18)–(6.20) in R(σ,
) are
(uL(σ,
),0,0) and (0,1,1). The region R(σ,
), the equilibria, and the
surface (6.22) are shown in Figure 3.

The equilibrium
(
uL(σ,
),0,0

)
has two positive eigenvalues and one

negative eigenvalue. The stable manifold is contained in the u-axis. The
equilibrium (0,1,1) has one negative eigenvalue and two zero eigenvalues.
The stable manifold is tangent to the vector (1,0,0). We are interested in
connections from

(
uL(σ,
),0,0

)
to (0,1,1) that arrive in the stable man-

ifold of the latter.
Notice that ẏ >0 for y >0 and ż>0 for z>0. Therefore (1) the por-

tion of Ws
loc(0,1,1) in u> 0 lies in R(σ,
); and (2) in backwards time,
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Figure 3. The surface u̇ = 0 for ε = 0 in uyz-space; u̇ is negative above the surface and
positive below it.

Ws(0,1,1) cannot leave R(σ,
) through its faces y = 1 or z= 1. More-
over, since the planes y = 0 and z= 0 are invariant, in backwards time
Ws(0,1,1) cannot leave R(σ,
) through them either. Therefore, in back-
wards time Ws(0,1,1) either (1) leaves R(σ,
) through the interior of its
face u=0, (2) leaves R(σ,
) through the interior of its face u=uL(σ,
),
or (3) approaches (uL(σ,
),0,0). In case 3, we have a connection from(
uL(σ,
),0,0

)
to (0,1,1) of the desired type. Since (see Figure 3) u̇ > 0

in the interior of the face u= 0, and u̇< 0 in the interior of the face u=
uL(σ,
), cases 1 and 2 each occur for an open set of σ . Hence, to show
that case 3 occurs for some σ > c1+c2

a1+a2
, we only need to show that cases 1

and 2 both occur for nonempty sets of σ .
To study large σ , we set σ = 1

δ
in (6.18)–(6.20), multiply the resulting

differential equation by δ (which amounts to a rescaling of time), and obtain

u̇ = − 1
λ1 +λ2

(
a1u+b1uy+ d1

A1
(y−1)+ δc1u+a2u+b2uz

+ d2

A2
(z−1)+ δc2v

)
, (6.23)

ẏ = δ2A1f (u, y), (6.24)

ż = δ2A2f (u, z). (6.25)

For δ=0, the systems (6.23)–(6.25) has an equilibrium at (0,1,1) with two
zero eigenvalues and one negative eigenvalue, and stable manifold equal to
the line y= z=1.

The point (0,1,1) persists as an equilibrium for δ > 0, with
one-dimensional stable manifold. Let

ū=
d1
A1

+ d2
A2

a1 +a2
.
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For small δ>0, the portion of the stable manifold of (0,1,1) with 0�u�
2ū is close to the line y= z= 1. Also, for small δ > 0, the region R(σ,
)

with σ = 1
δ

is close to the region 0 �u� ū, 0 � y� 1, 0 � z� 1. It follows
that for large σ , which corresponds to small δ, we are in case 2.

To study small σ > c1+c2
a1+a2

, we let σ = c1+c2
a1+a2

+ τ . Since uL(σ)→ ∞
as σ → c1+c2

a1+a2
, we also make the change of variables s = 1

u
for u> 0. We

obtain, for s >0,

ṡ= s

λ1 +λ2

(( c1 + c2

a1 +a2
+ τ

)

(
a1 +a2 +b1y+b2z+ d1

A1
(y−1)s+ d2

A2
(z−1)s

)

−(c1 + c2)

)
, (6.26)

ẏ= A1
a1 +a2

c1 + c2

(
1− a1 +a2

c1 + c2
τ +O(τ 2)

)
ye−

E
R
s, (6.27)

ż= A2
a1 +a2

c1 + c2

(
1− a1 +a2

c1 + c2
τ +O(τ 2)

)
ze−

E
R
s . (6.28)

Setting τ =0, we have, for s >0,

ṡ = c1 + c2

(a1 +a2)(λ1 +λ2)
s

(
b1y+b2z+ d1

A1
(y−1)s

+ d2

A2
(z−1)s

)
, (6.29)

ẏ = A1
a1 +a2

c1 + c2
ye−

E
R
s, (6.30)

ż = A2
a1 +a2

c1 + c2
ze−

E
R
s . (6.31)

The equilibria (0,1,1) of (6.18)–(6.20) here occur for s=∞ and therefore
are not visible. There is however an equilibrium at (s, y, z)= (0,0,0). It has
two positive eigenvalues and one 0 eigenvalue. The unstable manifold is the
yz-plane; a center manifold is the s-axis, on which ṡ=− c1+c2

(a1+a2)(λ1+λ2)

(
d1
A1

+
d2
A2

)
s2.
For small τ > 0 the equilibrium (0,0,0) of (6.29)–(6.31) perturbs to

a repeller at (0,0,0) and a saddle at (s,0,0) with s= aτ
d1
A1

+ d2
A2

. Given any

compact part of the yz-plane, the unstable manifold of the latter equilib-
rium is near it for small τ >0.

Returning to (u, y, z)-coordinates and the system (6.18)–(6.20), we see
that the last fact implies for small σ > c1+c2

a1+a2
, in the region 0 � y � 1,
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0 � z� 1, Wu(uL(σ,
),0,0) is close to the plane u= uL(σ,
). Since in
the interior of the face u=uL(σ,
) of R(σ,
), we have u̇< 0, points of
Wu

(
uL(σ,
),0,0

)
near this face lie in R(σ,
). This invariant manifold

prevents cases 2 and 3, so we are in case 1.
Since we have case 1 for small σ and case 2 for large σ , we must have

case 3 for some intermediate σ .
For ε > 0, we note that there are equilibria of the system (6.2)–(6.6)

at
(
uL(σ,
),0, uL(σ,
),0, εwL(σ,
)

)
and (0,1,0,1,0). Since these equi-

libria must lie in S(σ,
, ε), we see that for ε>0, the system (6.18)–(6.20),
with the perturbation in ε included, still has equilibria at

(
uL(σ,
),0,0

)

and (0,1,1). Therefore for ε >0 we consider the perturbed system (6.18)–
(6.20) in R(σ,
).

Recall that all three components of (6.21) are negative in R(σ,
). It
follows that given τ0>0, for sufficiently small ε0>0, if

c1 + c2

a1 +a2
+ τ0 �σ � 1

τ0
and 0� ε� ε0, (6.32)

then the surface u̇=0 is situated as in Figure 3.
We have ẏ � 0 and ż� 0 everywhere; and for (τ, ε) satisfying (6.32),

on the face y=1 (respectively, z=1) of R(σ,
), ẏ >0 (respectively, ż>0)
except possibly near u=0. It follows that, as for ε=0, there are three pos-
sible cases for where Ws(0,1,1) leaves R(σ,
), and cases 1 and 2 each
occur for an open set of σ . Perturbing from the ε= 0 situation, we eas-
ily see that case 1 occurs for small σ and case 2 for large σ , so case
3 must occur for some intermediate σ . Case 3 corresponds to a strong
connections of (3.3)–(3.7) from XL(σ,
) to XR.

7. COMBUSTION FRONTS IN TWO LAYERS FOR SMALL q

In this section, we investigate the existence of strong traveling waves
in (3.18)–(3.20) for small q > 0. Let P denote system parameter space.
There are functions σ1 and σ2 defined on P such that if 
∈P is a vector
of system parameters, then for q = 0, in layers 1 and 2 there are strong
traveling waves with speeds σ1(
) and σ2(
), respectively. (This follows
from Section 4, where we showed that the derivative of the one-layer sep-
aration function with respect to σ is nonzero.) Let M denote the set of
points in P where σ1 = σ2. A point 
 ∈M is called regular if D(σ1 −
σ2)(
) �= 0. Near any regular point of M, M is a codimension one sub-
manifold of P . Whereas for large q we were able to investigate arbitrary
vectors of system parameters, for small q>0 we shall only be able to study
vectors of system parameters near regular points of M.
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Theorem 7.1. Let 
∗ be a regular point of M, and let σ ∗ =σ1(

∗)=

σ2(

∗). Then for small q >0 there is an open subset Uq of P near 
∗ such

that for 
∈Uq , the systems (3.3)–(3.7), with vector of parameters 
, has a
strong traveling wave with speed near σ ∗.

In the remainder of this section, we give the proof of this result,
except for a computation that is left to Section 8.

Write 
= (
̃,π), where π is one of the system parameters and 
̃ is
the rest. The system parameter π is chosen so that at 
∗ = (
̃∗, π∗), the
directional derivative of σ1 −σ2 in the π -direction is nonzero. To simplify
the notation, we fix all values of the system parameters except π , i.e., we
fix 
̃= 
̃∗. We write (3.18)–(3.20) as

U̇ = G(U,w,σ,π), (7.1)

V̇ = H(V,w,σ,π), (7.2)

ẇ = q(v−u), (7.3)

σ̇ = 0, (7.4)

π̇ = 0. (7.5)

In this formulation, UVwσπ -space is the state space, and q is a param-
eter. We now regard σ1 and σ2 as functions of π , so that σ ∗ = σ1(π

∗)=
σ2(π

∗). Our assumption that the directional derivative of σ1 − σ2 in the
π -direction is nonzero becomes

(σ1 −σ2)
′(π∗) �=0. (7.6)

We shall also write the system (7.1)–(7.3) as

Ẋ=F(X,σ,π, q)= (G(U,w,σ,π),H(V,w,σ,π), q(v−u)). (7.7)

In this formulation, UVw-space is the state space, and σ , π , and q are
parameters.

With q regarded as small, the system (7.1)–(7.5) is a singular pertur-
bation problem in 7-dimensional UVwσπ -space, written in the fast time
ξ . In the slow time τ = qξ , using prime to denote derivative with respect
to τ , the system becomes

qU ′ = G(U,w,σ,π), (7.8)

qV ′ = H(V,w,σ,π), (7.9)

w′ = v−u, (7.10)

σ ′ = 0, (7.11)

π ′ = 0. (7.12)
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Figure 4. Wu(L0) and Ws(R0).

Let us consider the physically relevant region 0�y�1, 0�z�1. From
Section 5, for q = 0 the equilibria of the fast systems (7.1)–(7.5) in this
region include the following manifolds:

L0 =
{
(u, y, v, z,w,σ,π) :u=uL(w,σ,π)= σd1 −A1w

A1(σa1 − c1)
,

v=vL(w,σ,π)= σd2 +A2w

A2(σa2 − c2)
, y= z=0

}
,

R0 = {(u, y, v, z,w,σ,π) :u=v=w=0 and y= z=1}
(see Figure 4). L0 has dimension 3 and R0 has dimension 2. From
Section 5, equilibria in L0 have four nonzero eigenvalues, two positive and
two negative. Therefore, L0 is a normally hyperbolic invariant manifold,
and Wu(L0) has dimension 5. Equilibria in R0 have two nonzero eigen-
values, both negative. Therefore, Ws(R0) has dimension 4.

The system U̇ =G(U,0, σ,π) has a strong connection from
(
uL(0,

σ,π),0
)

to (0,1) if and only if σ = σ1(π), and V̇ =H(V,0, σ,π) has a
strong connection from

(
vL(0, σ,π),0

)
to (0,1) if and only if σ =σ2(π).

Let u∗
L = uL(0, σ ∗, π∗), v∗

L = vL(0, σ ∗, π∗). Let U∗(ξ)= (
u∗(ξ), y∗(ξ)

)

denote the connection of U̇ =G(U,0, σ ∗, π∗) from (u∗
L,0) to (0,1), and

let V ∗(ξ))= (
v∗(ξ), z∗(ξ)

)
denote the connection of V̇ =H(V,0, σ ∗, π∗)

from (v∗
L,0) to (0,1) Then Ẋ=F(X,σ ∗, π∗,0) has a 2-dimensional sheet

of traveling waves from (u∗
L,0, v

∗
L,0,0) to (0,1,0,1,0) given by

(U,V,w)= (U∗(ξ),V ∗(ξ +η),0). (7.13)

Wu(L0) and Ws(R0) meet transversally along this 2-dimensional manifold;
this is a consequence of (7.6) and will be shown in Section 8.

On L0, the slow system (7.8)–(7.12) takes the form

w′ = vL(w,σ,π)−uL(w,σ,π), (7.14)

σ ′ = 0, (7.15)

π ′ = 0. (7.16)
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Figure 5. A singular solution.

From (5.3), the equation w′ = vL(w,σ,π)− uL(w,σ,π)= 0 can be solved
for w in terms of (σ,π): w = wL(σ,π). This equation defines a two-
dimensional manifold of equilibria of (7.14)–(7.16) in wσπ -space. Since
the coefficient of w in (5.3) is positive, the equilibria are normally repel-
ling within wσπ -space. Let E0 be the set of points in L0 such that
w=wL(σ,π), a two-dimensional manifold. More precisely, let uL(σ,π)=
uL
(
wL(σ,π), σ,π

)
; then

E0 ={(u, y, v, z,w,σ,π) :u=v=uL(σ,π), y= z=0,w=wL(σ,π)}.

All points in E0 have u= v > 0. We saw in Section 5 that points of E0
remain equilibria for q >0.

Let w∗ =wL(σ ∗, π∗). For q = 0 we have the following singular solu-
tions of the singular perturbation problem (7.1)–(7.5):

(1) Slow part: the solution of (7.14)–(7.16) from (w∗, σ ∗, π∗) to (0, σ ∗, π∗).
In uyvzwσπ -space, this solution goes from

(
uL(w

∗, σ ∗, π∗),0, uL
(w∗, σ ∗, π∗),0,w∗, σ ∗, π∗) to (u∗

L,0, v
∗
L,0,0, σ

∗, π∗).
(2) Fast part: one of the connecting orbits (7.13) from (u∗

L,0, v
∗
L,0,

0, σ ∗, π∗) to (0,1,0,1,0, σ ∗, π∗)

(see Figure 5). We are interested in solutions for small q>0 near these sin-
gular solutions.

The fast part of the singular solution represents combustion. Along
the slow part of the singular solution, y and z are 0, i.e., there is no reac-
tant left; the temperatures u and v slowly change.

For fixed small q >0, R0 persists as a 2-dimensional set of equilibria
Rq of the fast system (7.1)–(7.5), given by the same equations. For small
q >0, we saw in Section 4 that equilibria in Rq have three nonzero eigen-
values, one small positive and two negative. Therefore, Ws(Rq) has dimen-
sion 4 and is close to Ws(R0).
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For fixed small q > 0, there is a normally hyperbolic invariant mani-
fold Lq near L0, given by equations of the form

u = ũL(w,p)=uL(w,σ,π)+O(q),
y = 0,

v = ṽL(w,p)=vL(w,σ,π)+O(q),
z = 0.

Wu(Lq) of course still has dimension 5. Lq contains the 2-dimensional
sheet of equilibria E0, so

ũL
(
wL(σ,π), σ,π, q

)=uL
(
wL(σ,π), σ,π

)=uL(σ,π).
To lowest order in q, the flow on Lq in the slow time is given by (7.14)–
(7.16). For the fast system (7.1)–(7.5) with q > 0, equilibria in Eq are
weakly repelling within Lq .

Wu(L0) and Ws(R0) meet transversally in the two-dimensional man-
ifold (7.13). Therefore, for small q > 0, Wu(Lq) and Ws(Rq) meet trans-
versally in a 2-dimensional sheet of orbits that connect Lq to Rq .
Upon arrival near Lq in backwards time, each of these orbits shad-
ows a solution in Lq , which in backwards time approaches an equi-
librium in E0. Thus each solution in Wu(Lq) ∩Ws(Rq) connects a left
state (uL,0, uL,0,wL,σ,π) to the right state (0,1,0,1,0, σ,π). Such a
connection moves slowly from (uL,0, uL,0,wL,σ,π) to approximately
(u∗
L,0, v

∗
L,0,0, σ,π), then jumps quickly to (0,1,0,1,0, σ,π).

For q=0, the connecting orbits all occur for one value of π . For q >
0, this is not the case. We shall show in Section 8 that for small q > 0,
traveling waves occur for an interval of values of π near π∗.

Our argument relies on the following observation. One can define a
function that measures the separation between Wu(Lq) and Ws(Rq) near a
point on one of the connecting orbits (7.13). Its derivative with respect to
q at q=0 is a Melnikov integral, which is the integral along the connect-
ing orbit of the product of a solution of a certain adjoint linear differen-
tial equation with ∂F

∂q
. The w-component of ∂F

∂q
is v−u. If the connecting

orbit has η large positive, then the vz-component of the orbit arrives near
(0,1) while the uy-component is still near (uL,0). The orbit then spends
a long time with (u, y, v, z) near (uL,0,0,1), where v−u is large negative.
Thus the Melnikov integral becomes large as η→∞. A similar phenome-
non occurs as η→−∞.

We note that for q=0, a connecting orbit with η large positive looks
like a connection from (vL,0) to (0,1) in vz-space, followed by a connec-
tion from (uL,0) to (0,1) in uy-space. For small q >0, nearby connecting
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Figure 6. The two-dimensional manifold of connecting orbits from (u∗
L,0, v

∗
L,0,0) to

(0,1,0,1,0) for (σ,π, q)= (σ ∗, π∗,0). The curve X∗(ζ ), α� ζ � β, is in the lower left. The
picture shows the plane w=0, which contains all the connecting orbits.

orbits retain this form. Thus the combustion front in uy-space occurs to
the left of the combustion front in vz-space.

8. SEPARATION FUNCTION AND MELNIKOV INTEGRALS

In this section, we construct the separation function between Wu(Lq)

and Ws(Rq), derive formulas for its derivatives as Melnikov integrals, esti-
mate the integrals, and show how the result implies Theorem 7.1. We
give full details since our situation has two nonstandard aspects occurring
simultaneously: (1) nonhyperbolic equilibria; and (2) a two-dimensional
sheet of connecting orbits when q=0, made up of two basic solutions with
arbitrary phase shift between them. The first degeneracy is treated in [4,
16]. The latter situation occurs in [2]; in fact, Figure 6 below also appears
in [2]. (This paper was discussed in Section 1.)

This section is organized as follows. In Section 8.1, we construct the
separation function. The results to be proved are stated in Section 8.2.
They are proved in the remaining Sections.

In this section, we treat q as a state variable. Thus we consider the
extended system

Ẋ=F(X,σ,π, q), σ̇ = π̇ = q̇=0 (8.1)

on 8-dimensional Xσπq-space. Let L (respectively, R) denote the set of
(X,σ,π, q) such that (X,σ,π) is in Lq (respectively, Rq ). Where conve-
nient, we shall simplify the notation by writing p = (σ,π, q) and p∗ =
(σ ∗, π∗,0); σ ∗ and π∗ were defined in the previous section.
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8.1. Construction of the Separation Function Between Wu(Lq) and
Ws(Rq)

We first define
(
ξ∗(ζ ), η∗(ζ )

)
, α<ζ <β, so that the curve

X∗(ζ )=
(
U∗(ξ∗(ζ )

)
, V ∗(ξ∗(ζ )+η∗(ζ )

)
,0
)

satisfies

(X1) ‖X∗′(ζ )‖=1,
(X2) X∗′(ζ ) ·F (X∗(ζ ), σ ∗, π∗,0

)=0,
(X3) limζ→α ξ

∗(ζ )= ξ−,
(X4) limζ→α η

∗(ζ )=−∞,
(X5) limζ→β ξ

∗(ζ )=−∞,
(X6) limζ→β ξ

∗(ζ )+η∗(ζ )=η+
with ξ− and η+ finite (see Figure 6). From (X5) and (X6),

(X7) limζ→β η
∗(ζ )=∞.

We extend X∗(ζ ) to α � ζ � β by setting X∗(α) = (
U∗(ξ−),0,0

)
and

X∗(β)= (0, V ∗(η+),0
)
.

Let

a(ζ ) = ∥∥U̇∗(ξ∗(ζ )
)∥∥−1

, U3(ζ )=a(ζ )
(
−ẏ∗(ξ∗(ζ )

)
, u̇∗(ξ∗(ζ )

))
,

b(ζ ) = ∥∥V̇ ∗(ξ∗(ζ )+η∗(ζ )
)∥∥−1

,

V4(ζ ) = b(ζ )
(
−ż∗(ξ∗(ζ )+η∗(ζ )

)
, v̇∗(ξ∗(ζ )+η∗(ζ )

))
,

X3(ζ ) = (
U3(ζ ),0,0

)
, X4(ζ )=

(
0, V4(ζ ),0

)
, X5 = (0,0,1).

We have limζ→β a(ζ )= ∞ and limζ→α b(ζ )= ∞. The vectors U3(ζ ) and
V4(ζ ) have norm 1. The definitions of U3 and V4 extend to to ζ =α and
ζ =β by continuity. The vector U3(β) (respectively, U4(α)) is orthogonal to
the unstable eigenvector of DG(u∗

L,0,0, σ
∗, π∗) (respectively, the unstable

eigenvector of DH(v∗
L,0,0, σ

∗, π∗)).
We define a 4-dimensional cross-section � to the flow in X-space to

be the image of the the map

�(ζ, γ, δ,ω)=X∗(ζ )+γX3(ζ )+ δX4(ζ )+ωX5.

A portion of the 5-dimensional manifold Ws(R) can be parameterized
as (Xs(ξ ; ζ,p),p), with each curve X=Xs(·; ζ,p) a solution of (7.7), and

Xs
(
ξ∗(ζ ); ζ,p)=X∗(ζ )+γ s(ζ,p)X3(ζ )+ δs(ζ,p)X4(ζ )+ws(ζ,p)X5.

Then γ s(ζ,p∗)= δs(ζ,p∗)=0 and ws(ζ, σ,π,0)=0.
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A portion of the 6-dimensional manifold Wu(L) can be parameterized
as (Xu(ξ ; ζ,ω,p),p), with each curve X=Xu(·; ζ,ω,p) a solution of (7.7)
and

Xu
(
ξ∗(ζ ); ζ,ω,p) = X∗(ζ )+γ u(ζ,ω,p)X3(ζ )+ δu(ζ,ω,p)X4(ζ )

+wu(ζ,ω,p)X5.

Then γ u(ζ,0, p∗) = δu(ζ,0, p∗) = 0, and we may assume that wu(ζ,ω,
σ,π,0)=ω. We may assume:

(X8) For each (ω,p), the curve Xu
(
ξ∗(ζ ); ζ,ω,p) lies in the unstable fiber

of the point
(
ũL(ω,p),0, ṽL(ω,p),0,ω,p

)
in L.

The functions ũ and ṽ were defined in the previous section. Note that (X8)
holds automatically for q=0.

Let

X̃u(ζL,ω,p) = �−1 ◦Xu(ξ∗(ζL); ζL,ω,p
)
, (8.2)

X̃s(ζR,p) = �−1 ◦Xs(ξ∗(ζR); ζR,p
)
, (8.3)

S̃(ζL,ω, ζR,p) = X̃u(ζL,ω,p)− X̃s(ζR,p). (8.4)

�−1 is of course a mapping from � to ζγ δω-space. The function S̃, from
ζLωζRσπq-space to ζγ δω-space, measures the separation between points
of Wu(L) and Ws(R) in the the cross-section �.

Connecting orbits from from L to R are in one-to-one correspon-
dence with solutions of the equation S̃= 0. We will first solve the system
S̃1 = S̃4 =0 for (ζL,ω) in terms of (ζR, p). We have

S̃1(ζL,ω, ζR,p)= ζL− ζR and S̃4(ζL,ω, ζR, σ,π,0)=ω−0=ω.

Therefore, ζL = ζR, and, by the implicit function theorem, ω= ω(ζR,p),
with ω(ζR, σ,π,0)=0.

Let

Si(ζR,p)= S̃i+1
(
ζR,ω(ζR,p), ζR,p

)
, i=1,2

and let S = (S1, S2). S is the separation function between Wu(L) and
Ws(R). Solutions of S̃=0 are in one-to-one correspondence with solutions
of S=0.
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Figure 7. A portion of the surface S = 0 and its projection to πq-space. In the picture,
∂π
∂q
(ζ,0) is negative for large ζ and positive for small ζ . The variable σ has been suppressed.

8.2. Statement of Results

We have S(ζ, σ ∗, π∗,0)= 0. We wish to find
(
σ(ζ, q),π(ζ, q)

)
such

that
(
σ(ζ,0), π(ζ,0)

)= (σ ∗, π∗) and

S
(
ζ, σ (ζ, q),π(ζ, q), q

)=0. (8.5)

According to the implicit function theorem, this can be done provided

D(ζ)= ∂S1

∂σ
(ζ,p∗)

∂S2

∂π
(ζ,p∗)− ∂S1

∂π
(ζ,p∗)

∂S2

∂σ
(ζ,p∗) (8.6)

is not zero.

Proposition 8.1. D(ζ) �=0.

In the course of the proof we will derive a useful formula for D(ζ). This
proposition implies the following result, which was stated in the previous
section.

Corollary 8.2. Wu(L0) and Ws(R0) meet transversally along the
2-dimensional manifold given by (7.13).

For fixed q, a traveling wave exists for a value of π provided π is in
the range of the function π(ζ, q) (see Figure 7).

Theorem 8.3. As ζ → α, ∂π
∂q
(ζ,0)→ ∞, and as ζ → β, ∂π

∂q
(ζ,0)→

−∞; or the reverse. In particular, for small q > 0, the range of π(ζ, q)
includes an open interval.

This result implies Theorem 7.1.
The remainder of this section is devoted to the proofs of these results.

Formulas for partial derivatives of the separation function are needed in
the proofs; we begin their derivation in Section 8.3 and complete it in Sec-
tion 8.4. In Section 8.5, these formulas are used to prove Proposition 8.1
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and Corollary 8.2. In Section 8.6, we prove Theorem 8.3 by deriving and
estimating an integral formula for ∂π

∂q
(ζ,0).

8.3. Partial Derivatives of the Separation Function: Introduction

For r=σ , π or q, and i=1, 2, we have

∂Si

∂r
(ζ,p∗) = ∂S̃i+1

∂ω
(ζ,0, ζ,p∗)

∂ω

∂r
(ζ,p∗)+ ∂S̃i+1

∂r
(ζ,0, ζ,p∗)

= ∂S̃i+1

∂r
(ζ,0, ζ,p∗). (8.7)

Therefore, we study DS̃(ζ,0, ζ,p∗).
We have

DS̃(ζ,0, ζ,p∗)=D�−1(X∗(ζ )
){DXu(ξ∗(ζ ); ζ,0, p∗)−DXs(ξ∗(ζ ); ζ,p∗)}.

(8.8)

Let

k(ζ )= ξ∗′(ζ ), �(ζ )= ξ∗′(ζ )+η∗′(ζ ), c(ζ )= ∂γ u

∂ω
(ζ,0, p∗),

d(ζ )= ∂γ s

∂ω
(ζ,0, p∗).

Then

D�(ζ,0,0,0)=
(
X∗′(ζ ) ∂Xu

∂ω

(
ξ ∗(ζ ); ζ,0, p∗) X3(ζ ) X4(ζ )

)

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

k(ζ )u̇∗(ξ ∗(ζ )
) −a(ζ )ẏ∗(ξ ∗(ζ )

)
0 −c(ζ )a(ζ )ẏ∗(ξ ∗(ζ )

)

k(ζ )ẏ∗(ξ ∗(ζ )
)

a(ζ )u̇∗(ξ ∗(ζ )
)

0 c(ζ )a(ζ )u̇∗(ξ ∗(ζ )
)

�(ζ )v̇∗(ξ ∗(ζ )+η∗(ζ )
)

0 −b(ζ )ż∗(ξ ∗(ζ )+η∗(ζ )
) −d(ζ )b(ζ )ż∗(ξ ∗(ζ )+η∗(ζ )

)

�(ζ )ż∗
(
ξ ∗(ζ )+η∗(ζ )

)
0 b(ζ )v̇∗(ξ ∗(ζ )+η∗(ζ )) d(ζ )b(ζ )v̇∗(ξ ∗(ζ )+η∗(ζ )

)

0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(8.9)

The first three columns of (8.9) have norm 1. Therefore,

D�−1(X∗(ζ ))

=

⎛

⎜⎜⎜⎜
⎝

k(ζ )u̇∗(ξ ∗(ζ )
)
k(ζ )ẏ∗(ξ ∗(ζ )

)
�(ζ )v̇∗(ξ ∗(ζ )+η∗(ζ )

)
�(ζ )ż∗

(
ξ ∗(ζ )+η∗(ζ )

)
0

−a(ζ )ẏ∗(ξ ∗(ζ )
)
a(ζ )u̇∗(ξ ∗(ζ )

)
0 0 −c(ζ )

0 0 −b(ζ )ż∗(ξ ∗(ζ )+η∗(ζ )
)
b(ζ )v̇∗(ξ ∗(ζ )+η∗(ζ )

) −d(ζ )
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠
.

(8.10)
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Consider the linear differential equation with parameter ζ

Ẏ (ξ)=DXF
(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
Y (ξ)

with DXF given by (5.5). Denote the solution by Y (ξ)=�(ξ, ξ0; ζ )Y (ξ0).
Now consider the adjoint differential equation with parameter ζ :

ψ̇(ξ)=−ψ(ξ)DXF
(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
.

We denote the solution whose value at ξ = ξ∗(ζ ) is the third (respectively,
fourth) row of D�−1

(
X∗(ζ )

)
by ψ1(ξ ; ζ ) (respectively, ψ2(ξ ; ζ )).

The following proposition collects useful facts.

Proposition 8.4. (1) ψ1(ξ ; ζ )=
(
ψ11(ξ ; ζ ) ψ12(ξ ; ζ ) 0 0 ψ15(ξ ; ζ )

)
with

(
ψ11(ξ ; ζ ) ψ12(ξ ; ζ )

)= a(ζ ) exp
(

−
∫ ξ

ξ∗(ζ )
div G

(
U∗(τ ),0, σ ∗, π∗)dτ

)

× (−ẏ∗(ξ) u̇∗(ξ)
)
.

(2) c(ζ )= ∫ ξ∗(ζ )
−∞

(
ψ11(ξ ; ζ ) ψ12(ξ ; ζ )

)
∂G
∂w

(
U∗(ξ),0, σ ∗, π∗)dξ

=− ∫ ξ∗(ζ )
−∞ ψ11(ξ ; ζ ) · 1

λ1
dξ.

(3) ψ15(ξ ; ζ )=−c(ζ )+ ∫ ξ
ξ∗(ζ ) ψ11(τ ; ζ ) · 1

λ1
dτ = ∫ ξ−∞ψ11(τ ; ζ ) · 1

λ1
dτ.

(4) ψ2(ξ ; ζ )=
(
0 0 ψ23(ξ ; ζ ) ψ24(ξ ; ζ ) ψ25(ξ ;ζ )

)
with

(
ψ23(ξ ;ζ ) ψ24(ξ ;ζ )

)=

b(ζ ) exp
(

−
∫ ξ

ξ∗(ζ )
div H

(
V ∗(τ +η∗(ζ )

)
,0, σ ∗, π∗

)
dτ

)

(−ż∗(ξ +η∗(ζ )
)
v̇∗(ξ +η∗(ζ )

))
.

(5) d(ζ )= ∫ ξ∗(ζ )
−∞

(
ψ23(ξ ; ζ ) ψ24(ξ ; ζ )

)
∂H
∂w

(
V ∗(ξ +η∗(ζ )

)
,0, σ ∗, π∗

)
dξ

= ∫ ξ∗(ζ )
−∞ ψ23(ξ ; ζ ) · 1

λ2
dξ.

(6) ψ25(ξ ; ζ )=−d(ζ )− ∫ ξ
ξ∗(ζ ) ψ23(τ ; ζ ) · 1

λ2
dτ =− ∫ ξ−∞ψ23(τ ; ζ ) · 1

λ2
dτ.

(7) As ξ → −∞, all ψij (ξ ; ζ ) go to 0 exponentially. As ξ → ∞, ψ11(ξ ; ζ )
and ψ23(ξ ; ζ ) go to 0; ψ12(ξ ; ζ ), ψ15(ξ ; ζ ), ψ24(ξ ; ζ ), and ψ25(ξ ; ζ )
approach constants.

Proof. (1) and (4) follow from the formula (5.5). (Compare (4.14).)
(2) and (5) follow from standard Melnikov integral calculations. Then (3)
and (6) follow from the formula (5.5).

To prove (7), let −νuL denote the negative eigenvalue of DG(0,1,0,
σ ∗, π∗). Since the corresponding eigenvector is horizontal, we have

lim
ξ→∞

eνuLξ
(
u̇(ξ), ẏ(ξ)

)= (−K,0)
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for some K > 0. Also, as ξ → ∞, div G
(
U∗(ξ),0, σ ∗, π∗) = −νuL +

O(e−νuLξ ). It follows that as ξ → ∞, ψ11(ξ ; ζ )→ 0, and ψ12(ξ ; ζ ) and
ψ25(ξ ; ζ ) approach constants. The other parts of (7) rely on similar argu-
ments.

8.4. Partial Derivatives of the Separation Function: Formulas

Proposition 8.5. For r = σ , π , or q, ∂Si
∂r
(ζ,p∗) = ∫∞

−∞ψi(ξ ; ζ )
∂F
∂r

(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
dξ.

Proof. From (8.7), (8.8), and (8.10), we have

DS(ζ,p∗)=
(
ψ1
(
ξ∗(ζ ); ζ )

ψ2
(
ξ∗(ζ ); ζ )

)
{DXu(ξ∗(ζ ); ζ,0, p∗)−DXs(ξ∗(ζ ); ζ,p∗)}.

(8.11)

For r=σ , π , or q,

∂

∂ξ

∂Xu

∂r
= ∂

∂r

∂Xu

∂ξ
= ∂

∂r
F (Xu,p).

Therefore, ∂Xu

∂r
(ξ ; ζ,0, p∗) satisfies

Ẏ =DXF
(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
Y + ∂F

∂r

(
U∗(ξ),V ∗(ξ+η∗(ζ )

)
,0, p∗

)
.

Then for any ξ0 we have

∂Xu

∂r

(
ξ∗(ζ ); ζ,0, p∗)

=�(ξ∗(ζ ), ξ0; ζ
)∂Xu

∂r
(ξ0; ζ,0, p∗)

+
∫ ξ∗(ζ )

ξ0

�
(
ξ∗(ζ ), ξ ; ζ )∂F

∂r

(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
dξ.

(8.12)

Multiplying (8.12) by ψi
(
ξ∗(ζ ); ζ ), we obtain

ψi
(
ξ∗(ζ ); ζ )∂X

u

∂r

(
ξ∗(ζ ); ζ,0, p∗)

=ψi(ξ0; ζ )∂X
u

∂r
(ξ0; ζ,0, p∗)

+
∫ ξ∗(ζ )

ξ0

ψi(ξ ; ζ )∂F
∂r

(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
dξ. (8.13)
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Similarly,

ψi
(
ξ∗(ζ ); ζ )∂X

s

∂r

(
ξ∗(ζ ); ζ,p∗)

=ψi(ξ1; ζ )∂X
s

∂r
(ξ1; ζ,p∗)

+
∫ ξ∗(ζ )

ξ1

ψi(ξ ; ζ )∂F
∂r

(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
dξ. (8.14)

From (8.11), (8.13), and (8.14),

∂Si

∂r
(ζ,p∗) = lim

(ξ0,ξ1)→(−∞,∞)

(
ψi(ξ0; ζ ) ∂X

u

∂r
(ξ0; ζ,0, p∗)−ψi(ξ1; ζ ) ∂X

s

∂r
(ξ ; ζ,p∗)

+
∫ ξ1

ξ0

ψi(ξ ; ζ ) ∂F
∂r

(
U∗(ξ),V ∗(ξ +η∗(ζ )

)
,0, p∗

)
dξ

)
. (8.15)

For r = σ , π , or q, as ξ → ∞, ∂Xs

∂r
(ξ ; ζ,p∗) approaches 0 exponen-

tially, since the equilibrium is always (0,1,0,1,0). Then from Proposition
8.4 (7) the limit of the second term in (8.15) is 0.

For r = σ or π , as ξ → −∞, ∂Xu

∂r
(ξ ; ζ,0, p∗) approaches exponen-

tially the vector
(
∂uL
∂r
(0, σ ∗, π∗),0, ∂vL

∂r
(0, σ ∗, π∗),0,0

)
. Then from Propo-

sition 8.4 (7) the limit of the first term in (8.15) is 0.
For r = q, this term requires a more detailed treatment. From (X8),

as ξ →−∞, the solutions Xu(ξ ; ζ,ω,p) approach exponentially solutions
XL(ξ − ξ∗(ζ );ω,p) in L. We have

XL(ξ ;ω,σ,π, q)= XL(ξ ;ω,σ,π,0)+O(q)
= (

uL(ω,σ,π),0, vL(ω,σ,π),0,ω
)

+q(ûL(ξ ;ω,σ,π),0, v̂L(ξ ;ω,σ,π),0, ŵL(ξ ;ω,σ,π)
)

+O(q2).

We find that

∂

∂ξ

⎛

⎜
⎝
ûL(ξ ;ω,σ,π)
v̂L(ξ ;ω,σ,π)
ŵL(ξ ;ω,σ,π)

⎞

⎟
⎠

=

⎛

⎜
⎝

∂G1
∂u

(
uL(ω,σ,π),0,ω, σ,π

)
0 ∂G1

∂w

(
uL(ω,σ,π),0,ω, σ,π

)

0 ∂H1
∂v

(
vL(ω,σ,π),0,ω, σ,π

)
∂H1
∂w

(
vL(ω,σ,π),0,ω, σ,π

)

0 0 0

⎞

⎟
⎠

·

⎛

⎜
⎝
ûL(ξ ;ω,σ,π)
v̂L(ξ ;ω,σ,π)
ŵL(ξ ;ω,σ,π)

⎞

⎟
⎠+

⎛

⎜
⎝

0
0

vL(ω,σ,π)−uL(ω,σ,π)

⎞

⎟
⎠ .
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From (X8), ŵL
(
0;ω,σ,π)=0. Therefore

ŵL
(
ξ − ξ∗(ζ );ω,σ,π)= (vL(ω,σ,π)−uL(ω,σ,π)

)(
ξ − ξ∗(ζ )

)

and there are constants aL, bL, cL, dL such that, for ξ <0,

ûL(ξ ;ω,σ,π) =aL+bLξ + exponentially small terms,

v̂L(ξ ;ω,σ,π) = cL+dLξ + exponentially small terms.

Also, as ξ → −∞, ∂Xu

∂q
(ξ ; ζ,ω,p) approaches exponentially ∂XL

∂q

(
ξ −

ξ∗(ζ );ω,p). Therefore, in (8.15) with r=q, for ξ − ξ∗(ζ )<0,

∂Xu

∂q
(ξ0; ζ,0, p∗) =

(
ûL
(
ξ0 − ξ∗(ζ );0, σ ∗, π∗),0, v̂L

(
ξ0 − ξ∗(ζ );0, σ ∗, π∗),

0, (v∗
L−u∗

L)
(
ξ0 − ξ∗(ζ )

))

plus exponentially small terms.
Then from Proposition 8.4 (7) the limit of the second term in (8.15)

is 0.

We now introduce notation to show the dependence of various quan-
tities on ζ more explicitly. Define ψ∗

1 (ξ)=
(
ψ∗

11(ξ) ψ
∗
12(ξ) 0 0 ψ∗

15(ξ)
)

with

(
ψ∗

11(ξ) ψ12(ξ)
) = exp

(
−
∫ ξ

0
div G

(
U∗(τ ),0, σ ∗, π∗)dτ

)(−ẏ∗(ξ) u̇∗(ξ)
)
,

ψ∗
15(ξ) = 1

λ1

∫ ξ

−∞
ψ∗

11(τ ) dτ.

Let

A(ζ ) = exp
∫ ξ∗(ζ )

0
div G

(
U∗(τ ),0, σ ∗, π∗)dτ and

Mr(ζ ) =
∫ ∞

−∞
ψ∗

1 (ξ)
∂G

∂r

(
U∗(ξ),0, p∗

)
dξ.

Mr(ζ ) is independent of ζ for r=σ, π . We have

ψ1(ξ ; ζ )=a(ζ )A(ζ )ψ∗
1 (ξ),

and, for r=σ , π , or q,

∂S1

∂r
(ζ,p∗)=

∫ ∞

−∞
ψ1(ξ ; ζ )∂G

∂r

(
U∗(ξ),0, p∗

)
dξ =a(ζ )A(ζ )Mr(ζ ).

(8.16)



Porous Medium with Two Layers

Also, let η= ξ +η∗(ξ), and define φ2(η; ζ )=ψ2(ξ ; ζ ). Define

φ∗
2 (η)=

(
0 0 φ∗

23(η) φ
∗
24(η) φ

∗
25(η)

)

with

(
φ∗

23(η) φ
∗
24(η)

) = exp
(

−
∫ η

0
div H

(
V ∗(θ),0, σ ∗, π∗)dθ

)
(−ż∗(η) v̇∗(η)

)
,

φ∗
25(η) = − 1

λ2

∫ η

−∞
φ∗

23(θ) dθ. (8.17)

Let

B(ζ )= exp
∫ ξ∗(ζ )+η∗(ζ )

0
div H

(
V ∗(ρ),0, σ ∗, π∗)dρ

and Nr(ζ )=
∫ ∞

−∞
φ∗

2 (η)
∂H

∂r

(
V ∗(η),0, σ ∗, π∗)dη.

Nr(ζ ) is independent of ζ for r=σ, π . We have

φ2(η; ζ )=b(ζ )B(ζ )φ∗
2 (η)

and, for r=σ , π , or q,

∂S2

∂r
(ζ,p∗)=

∫ ∞

−∞
ψ2(ξ ; ζ )∂H

∂r

(
V ∗(ξ +η∗(ζ )

)
,0, σ ∗, π∗

)
dξ

=
∫ ∞

−∞
φ2(η; ζ )∂H

∂r

(
V ∗(η),0, σ ∗, π∗)dη=b(ζ )B(ζ )Nr(ζ ).

(8.18)

As in Proposition 8.4(7), we have

Proposition 8.6. As ξ→−∞, all ψ∗
1j (ξ) and φ∗

2j (η) go to 0 exponen-
tially. As ξ → ∞, ψ∗

11(ξ) and φ∗
23(η) go to 0; ψ∗

12(ξ), ψ
∗
15(ξ), φ

∗
24(η) and

φ∗
25(η) approach constants.

8.5. Proofs of Proposition 8.1 and Corollary 8.2

We first prove Proposition 8.1.

Proof. From (8.6),

D(ζ)=a(ζ )b(ζ )A(ζ )B(ζ )(MσNπ −MπNσ ). (8.19)
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We need to show that MσNπ −MπNσ �=0. Recall that separation func-
tions Ŝi (σ,π) for the individual layers were defined in Section 4. From
(4.15) we see that for r=σ, π ,

Mr = ∂Ŝ1

∂r
(σ ∗, π∗) and Nr = ∂Ŝ2

∂r
(σ ∗, π∗).

Since σi(π) satisfies Ŝi (σi(π),π)=0, we have

σ ′
i (π

∗)=−∂Ŝi
∂σ

(σ ∗, π∗)/
∂Ŝi

∂π
(σ ∗, π∗).

Since (σ1 −σ2)
′(π∗) �=0,

MσNπ −MπNσ = ∂Ŝ1

∂σ
(σ ∗, π∗)

∂Ŝ2

∂π
(σ ∗, π∗)− ∂Ŝ1

∂π
(σ ∗, π∗)

∂Ŝ2

∂σ
σ ∗, π∗) �=0.

(8.20)

Next we prove Corollary 8.2.

Proof. It is enough to show that Wu(L0) and Ws(R0) meet transver-
sally within �×σπ -space.

The intersection of Wu(L0) with � × σπ -space is the image of the
map

X u: ζLωσπ -space→Xσπ -space

given by X u(ζL,ω,σ,π)=
(
Xu(ζL,ω,σ,π), σ,π

)
Similarly, the intersection

of Ws(R0) with �×σπ -space is the image of the map

X s : ζRσπ -space→Xσπ -space

given by X s(ζR, σ,π) = (
Xs(ζR, σ,π), σ,π

)
. We have X u(ζ,0, σ ∗, π∗) =

X s(ζ, σ ∗, π∗). We must show that the ranges of DX u(ζ,0, σ ∗, π∗) and
DX s(ζ, σ ∗, π∗) span the tangent space to �×σπ -space at X u(ζ,0, σ ∗, π∗)
=X s(ζ, σ ∗, π∗). Equivalently, define

X̃ u:ζLωσπ -space→ ζγ δωσπ -space and X̃ s : ζRσπ -space→ ζγ δωσπ -space

by

X̃ u(ζL,ω,σ,π)=
(
�◦Xu(ζL,ω,σ,π), σ,π

)
and

X̃ s(ζR, σ,π)=
(
�◦Xs(ζR, σ,π), σ,π

)
.
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We must show that the ranges of DX̃ u(ζ,0, σ ∗, π∗) and DX̃ s(ζ, σ ∗, π∗)
span ζγ δωσπ -space. The sum of these ranges is the span of the column
vectors in the following matrix:

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
0 ∂γ u

∂ω
(ζ,p∗) ∂γ

u

∂σ
(ζ,p∗) ∂γ

u

∂π
(ζ,p∗) ∂γ

σ

∂σ
(ζ,p∗) ∂γ

s

∂π
(ζ,p∗)

0 ∂δu

∂ω
(ζ,p∗) ∂δu

∂σ
(ζ,p∗) ∂δu

∂π
(ζ,p∗) ∂δs

∂σ
(ζ,p∗) ∂δs

∂π
(ζ,p∗)

0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Equivalently, we may use the matrix
⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 0 0

0 ∂γ u

∂ω
(ζ,0, p∗) ∂γ u

∂σ
(ζ,0, p∗)− ∂γ s

∂σ
(ζ,p∗) ∂γ u

∂π
(ζ,0, p∗)− ∂γ s

∂π
(ζ,p∗) ∂γ s

∂σ
(ζ,p∗) ∂γ s

∂π
(ζ,p∗)

0 ∂δu

∂ω
(ζ,0, p∗) ∂δu

∂σ
(ζ,0, p∗)− ∂δs

∂σ
(ζ,p∗) ∂δu

∂π
(ζ,0, p∗)− ∂δs

∂σ
(ζ,p∗) ∂δs

∂σ
(ζ,p∗) ∂δs

∂π
(ζ,p∗)

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

.

This matrix has nonzero determinant if and only if

det

(
∂γ u

∂σ
(ζ,0, p∗)− ∂γ s

∂σ
(ζ,p∗) ∂γ

u

∂π
(ζ,0, p∗)− ∂γ s

∂π
(ζ,p∗)

∂δu

∂σ
(ζ,0, p∗)− ∂δs

∂σ
(ζ,p∗) ∂δu

∂π
(ζ,0, p∗)− ∂δs

∂σ
(ζ,p∗)

)

�=0.

This is equivalent to D(ζ) �=0.

8.6. Proof of Theorem 8.3

Proposition 8.7. (1) As ζ →α, ∂π
∂q
(ζ,0) grows like a constant plus

− Nσψ
∗
15(∞)v∗

L

MσNπ −MπNσ
η∗(ζ ).

(2) As ζ →β, ∂π
∂q
(ζ,0) grows like a constant plus

Mσφ
∗
25(∞)u∗

L

MσNπ −MπNσ
η∗(ζ ).

Recall that MσNπ − MπNσ �= 0 by (8.20). From their definitions,
Mσ > 0, Nσ > 0, ψ∗

15(∞) < 0, and φ∗
25(∞) > 0. Since limζ→α η

∗(ζ ) =
−∞ and limζ→β η

∗(ζ )= ∞, we see that limζ→α
∂π
∂q
(ζ,0)= −sgn(MσNπ −

MπNσ)∞ and limζ→β
∂π
∂q
(ζ,0)= sgn(MσNπ −MπNσ)∞. Hence this prop-

osition implies Theorem 8.3. The remainder of this section is devoted to
its proof.
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Differentiating (8.5) with respect to q and setting q=0 yields
(
∂S1
∂σ
(ζ,p∗) ∂S1

∂π
(ζ,p∗)

∂S2
∂σ
(ζ,p∗) ∂S2

∂π
(ζ,p∗)

)(
∂σ
∂q
(ζ,0)

∂π
∂q
(ζ,0)

)

+
(
∂S1
∂q
(ζ,p∗)

∂S2
∂q
(ζ,p∗)

)

=
(

0
0

)
. (8.21)

Since D(ζ) �=0, (8.21) yields
(
∂σ
∂q
(ζ,0)

∂π
∂q
(ζ,0)

)

=−D(ζ)−1

(
∂S2
∂π
(ζ,p∗) − ∂S1

∂π
(ζ,p∗)

− ∂S2
∂σ
(ζ,p∗) ∂S1

∂σ
(ζ,p∗)

)(
∂S1
∂q
(ζ,p∗)

∂S2
∂q
(ζ,p∗)

)

. (8.22)

From (8.22), (8.19), (8.16), and (8.18),

∂π

∂q
(ζ,0)=Mq(ζ )Nσ −MσNq(ζ )

MσNπ −MπNσ
.

We have

Mq(ζ )=
∫ ∞

−∞
ψ∗

15(ξ)v
∗(ξ +η∗(ζ )

)
dξ −

∫ ∞

−∞
ψ∗

15(ξ)u
∗(ξ) dξ (8.23)

and

Nq(ζ )=
∫ ∞

−∞
φ∗

25(η)v
∗(η) dη−

∫ ∞

−∞
φ∗

25(η)u
∗(η−η∗(ζ )

)
dη. (8.24)

We first consider (8.23) as ζ approaches α and β. The second integral
of (8.23) is a constant independent of ζ .

To study the first integral of (8.23) as ζ →β, rewrite it as

∫ 0

−∞
ψ∗

15(ξ)v
∗(ξ +η∗(ζ )

)
dξ +

∫ ∞

0
ψ∗

15(ξ)v
∗(ξ +η∗(ζ )

)
dξ.

As ζ →β, η∗(ζ )→∞, and both integrals go to 0.
To study the first integral of (8.23) as ζ → α, let ε > 0 and choose

δ > 0 so that if |ψ∗
15(ξ)− ψ∗

15(∞)|< δ and |v − v∗
L|< δ then |ψ∗

15(ξ)v −
ψ∗

15(∞)v∗
L|<ε. Choose ξ1 such that for ξ >ξ1, |ψ∗

15(ξ)−ψ∗
15(∞)|<δ, and

choose ξ2 such that for ξ <ξ2, |v(ξ)−v∗
L|<δ. For ζ near α, η∗(ζ ) is near

−∞, so ξ1<ξ2 −η∗(ζ ). Hence we can write the first integral of (8.23) as

∫ ξ1

−∞
ψ∗

15(ξ)v
∗(ξ +η∗(ζ )

)
dξ +

∫ ξ2−η∗(ζ )

ξ1

ψ∗
15(ξ)v

∗(ξ +η∗(ζ )
)
dξ

+
∫ ∞

ξ2−η∗(ζ )
ψ∗

15(ξ)v
∗(ξ +η∗(ζ )

)
dξ.
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The first of these integrals is bounded by
∫ ξ1
−∞ψ∗

15(ξ)v
∗
L dξ . For the

second, we have
∫ ξ2−η∗(ζ )

ξ1

|ψ∗
15(ξ)v

∗(ξ +η∗(ζ )
)−ψ∗

15(∞)v∗
L|dξ

<

∫ ξ2−η∗(ζ )

ξ1

εdξ <ε(ξ2 −η∗(ζ )− ξ1),

so the second integral lies between
(
ψ∗

15(∞)v∗
L ± ε

)(
ξ2 − η∗(ζ )− ξ1

)
. The

third can be rewritten as
∫ ∞

ξ2

ψ15
(
η−η∗(ζ ); ζ )v∗(η) dξ,

which converges and is bounded uniformly in ζ since ψ15 is bounded.
Thus, as ζ → α, the first integral of (8.23) grows like a constant minus
ψ∗

15(∞)v∗
Lη

∗(ζ ).
Next, we consider (8.24) as ζ approaches α and β. The first integral

is a finite constant independent of ζ , and the second approaches zero as
ζ→α. To study the second integral as ζ→β, let ε>0 and choose δ>0 so
that if |φ∗

25(η)−φ∗
25(∞)|<δ and |u−u∗

L|<δ then |φ∗
25(η)v−φ∗

25(∞)u∗
L|<ε.

Choose η1 such that for η>η1, |φ∗
25(η)−φ∗

25(∞)|<δ, and choose η2 such
that for ξ < ξ2, |u(ξ)−u∗

L|<δ. For ζ near β, we have η1<η2 + η∗(ζ ), so
we can write the first integral of (8.23) as

∫ η1

−∞
φ∗

25(η)u
∗(η−η∗(ζ )

)
dη+

∫ η2+η∗(ζ )

η1

φ∗
25(η)u

∗(η−η∗(ζ )
)
dη

+
∫ ∞

η2+η∗(ζ )
φ∗

25(η)u
∗(η−η∗(ζ )

)
dη.

The first and third integrals are bounded, and the second lies between(
φ∗

25(∞)u∗
L±ε)(η2 +η∗(ζ )−η1

)
. Thus, as ζ→α, the first integral of (8.24)

grows like a constant plus φ∗
25(∞)u∗

Lη
∗(ζ ).

9. NUMERICAL RESULTS AND METHODS

In this section, we give some numerical results for the PDE (2.25)–
(2.28) on a finite domain 0<x<l, t >0, as well as some ODE simulations
that show the traveling wave directly.

For physical parameters we use typical values from [12] and [15],
including E=0.15×73,500 kJ/kmole, and R=8.3143 kJ/kmole K. We shift
and rescale the temperature so that 0 corresponds to the initial tempera-
ture of the porous medium T0, which we also take to be the ignition tem-
perature, and 1 corresponds to T0 +773.15.
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Figure 8. Temperature profiles in layers 1 and 2 at four equally spaced times t1 = 56.0, t2 =
64.0, t3 =72.0, and t4 =80.0, with q=0.

For reference space, time, and temperature values we use x�= 3.0 m,
t� = 1.0 D, and T � = 773.15 K, respectively. So, after dividing Eq. (2.25)
by b1 and (2.27) by b2 we find the following dimensionless parameters:
a1 =19.4840, a2 =16.7032, b1 =1.0, b2 =1.0, c1 =1.8054, c2 =2.1063, d1 =
62.5415, d2 = 50.9796, A1 = 5.4093, A2 = 4.4093, λ1 = 0.0815, λ2 = 0.0815.
We use l=40.

Let the PDE solution be W(x, t) = (
u(x, t), y(x, t), v(x, t), z(x, t)

)
,

0<x<l. Our simulations use Neumann boundary conditions at x=0 and
x= l, and piecewise constant initial data

W(x,0)=
{
(u0,0, v0,0), if 0<x<a,
(0,1,0,1), if a<x<l.

(9.1)

The values u0 and v0 can be interpreted as the gas injection temperatures
at the left end x=0 of layers 1 and 2, respectively. Note that at the start
of the simulation, there is no fuel available for 0<x < a. For a < x < 1,
all the fuel is available, and the temperature is 0. These initial conditions
are appropriate for studying the propagation of a combustion front to the
right.

Figure 8 shows a PDE simulation with u0 = v0 = 0.2 and q = 0. In
each layer a traveling wave forms, but the waves have different left states
(combustion temperature) and different speeds. The dimensionless com-
bustion temperatures in layers 1 and 2 are approximately 1.15 and 1.50,
respectively, and the wave speeds are approximately 0.18 and 0.24.

Figure 9 shows a PDE simulation with u0 = v0 = 0.2 and q = 0.47.
Moving from right to left, we see that ahead of the combustion front
the temperature is 0 (the initial temperature). In the combustion zones,
which differ in the two layers, the temperature rises rapidly to the layer
combustion temperature, which is higher in layer 1 than layer 2, as in
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Figure 9. Temperature profiles in layers 1 and 2 at four equally spaced times t1 = 56.0, t2 =
64.0, t3 =72.0, and t4 =80.0, with q=0.47.

Figure 8. Behind the combustion zones the temperatures slowly equilibrate
at a high value, consistent with the analysis in Section 7. The part of the
solution from here to the right propagates as a traveling wave. Behind
this point the solution in each layer approaches the injection temperature.
The dimensionless combustion temperatures in layers 1 and 2 are approxi-
mately 1.15 and 1.40, respectively, and the traveling wave speed is approx-
imately 0.23.

For comparison, Figure 10 shows plots of the u-, v-, and w-coordi-
nates of the strong heteroclinic solution of the ODEs (3.3)–(3.7) with q=
0.47, which occurs for σ = 0.223076. The solutions were computed on a
time-interval of length 20, which in the plots is normalized to 0 � τ � 1.
Note that the fast jump in u (respectively, v) occurs slightly before (respec-
tively, after) τ = 0.70. Before the jump, the u- and v- components change
slowly from equal values (approximately 1.25) to different layer combus-
tion temperatures. Meanwhile w is slowly increasing; it then jumps quickly
to near 0. This picture is consistent with the analysis of the traveling wave
for small q at the end of Section 7.

(a) (b) (c)

Figure 10. The u-, v-, and w-coordinates of the strong heteroclinic solution with q = 0.47
and σ =0.223076.
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(a) (b) (c)

Figure 11. Three views of the strong heteroclinic orbit with q=0.47, and σ =0.223076.

Figure 11 shows three different projections of the same solution in
phase space. The uy-plot includes an initial portion in which u slowly
decreases from near 1.25 while y remains near 0; the vz-plot includes an
initial portion in which v slowly increases from near 1.25 while z remains
near 0. Recall from Section 7 that the slow manifold L0 has y=z=0. The
uv plot shows the initial slow portion of the solution as a short diagonal
at the right. After this slow portion, the solution jumps first in u, then in
v.

Figure 12 shows a PDE simulation with u0 =v0 =0.2 and q=117.61.
Temperature profiles in the two layers are extremely close, with dimension-
less combustion temperature approximately 1.30 and wave speed approxi-
mately 0.21.

This is consistent with the analysis in Section 6, where solutions for
large q are shown to lie near the manifold u= v. For comparison, Fig-
ure 13 shows plots of the u- and v-coordinates of the strong heteroclinic
solution with q=117.61 and σ =0.203274, and the projection of the same
solution in phase space to the uv-plane. The solutions were computed on
a time-interval of length 2, which in the plots is normalized to 0� τ �1.
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Figure 12. Temperature profiles in layers 1 and 2 at four equally spaced times t1 =56.0, t2 =
64.0, t3 =72.0, and t4 =80.0, with q=117.61.
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(a) (b) (c)

Figure 13. The u- and v-coordinates of the strong heteroclinic solution with q=117.61 and
σ =0.203274, and the projection of the same solution in phase space to the uv-plane.

The PDE simulations in Figure 14 show that the traveling combus-
tion wave that forms is independent of the injection temperature, pro-
vided the injection temperature is sufficiently large. It depends only on the
system parameters and q, consistent with our analysis. The PDE simula-
tion in Figure 15 shows that if the injection temperature is too small, no
combustion wave forms.

To describe our numerical method for the PDEs (2.25)–(2.28), let h=
�x= l/M, k=�t= t0/N , xi= ih, tn=nk, where M and N denote the respec-
tive number of intervals in [0, l] and [0, t0] for some t0<∞. For each mesh
point (xi, tn)∈ [0,L]× [0, t0] let Wn

i =W(xi, tn), and let Wn=W(x, tn) when
xi does not need to be specified.

Suppose we know the solution Wn= (un, yn, vn, zn) at time tn. Equa-
tions (2.26) and (2.28) are linear in y and z, respectively. Therefore, fixing
u=un and v=vn, we can find yn+1 and zn+1 by solving these ODEs with
initial conditions y=yn and z= zn, respectively. We obtain

yn+1 =yn exp
(−A1g(u

n)k
)

and zn+1 = zn exp
(−A2g(v

n)k
)
, (9.2)

where g(w)= exp(−E/RT ∗w).
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Figure 14. Temperature and fuel consumption profiles for three different injection tempera-
tures with q=1.18.
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Figure 15. Temperature and fuel consumption profiles for low-injection temperatures with
q = 1.18. A region of slightly elevated temperature propagates to the right, in which a very
small amount of fuel has been consumed (only visible at greater magnification).

The other new values un+1 and vn+1 are found after substituting yn+1

and zn+1 in (2.25) and (2.27) and solving the corresponding problem by
some numerical method. We use the Crank–Nicholson implicit finite-differ-
ence scheme. Alternatively, we could have used finite-difference approxima-
tions associated with monotone iteration from a lower solution (see [14]).

The ODE strong heteroclinic solutions are computed using the bound-
ary-value problem continuation routine of AUTO [8]. The boundary con-
ditions state that at time T1 (respectively, time T2) the solution is in the
linear approximation to the unstable manifold at XL (respectively, the lin-
ear approximation to the stable manifold at XR). Once such a solution is
known for some value of the parameters, the parameters can be varied one
at a time and the solution followed. The times T1<T2 are also treated as
parameters, so that the length of the time interval can be changed when
necessary. An integral condition is used to fix the phase of the heteroclinic
solution [10]. The accuracy of a related numerical method is analyzed in
[17]. The procedure is initialized as follows: by visual inspection of numer-
ical phase portraits for the one-layer ODE (4.1) and (4.2), we identify
approximate parameter values (a1, b1, c1, d1,A1, λ1, σ ) for which a strong
heteroclinic solution (u(ξ), y(ξ)) exists; uL is then calculated from (4.4).
We then set the remaining parameters a2 = a1, b2 = b1, etc. For these
parameter values and any q, the five-dimensional ODEs (3.3)–(3.7) has the
approximate heteroclinic solution (u, y, v, z,w)= (u(ξ), y(ξ), u(ξ), y(ξ),0).
We initialize AUTO at this solution.
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